Annual Report

Water and Nutrient Research: In-field and Offsite Strategies

Matthew Helmers Associate Professor

William Crumpton Associate Professor

Carl Pederson Research Associate

Greg Stenback Research Associate

Reid Christianson Research Associate

January 1, 2005 – December 31, 2009

Submitted to Iowa Department of Agriculture and Land Stewardship

Submitted by Department of Agricultural and Biosystems Engineering Department of Ecology, Evolution and Organismal Biology Iowa State University, Ames

NUTRIENT AND WATER MANAGEMENT PROJECT 2005-2009

Much of Iowa is characterized by relatively flat, poorly-drained soils which, with extensive artificial subsurface drainage, have became some of the most valuable, productive lands in the State. In 2002, the average land value for the 22-county area making up most of the Des Moines Lobe was 2,436 an acre, and 80.5% of that area was in row-crops (42.9% in corn and 37.6% soybeans). However, this drained land has also become a source of significant NO₃ loss because of the changes in land-use and hydrology brought about by tile drainage. While surface runoff is decreased with subsurface drainage (resulting in decreased losses of sediment, ammonium-nitrogen, phosphorus, pesticides and micro-organisms), subsurface flow and leaching losses of NO₃ are increased. This is due mostly to an increase in volume and the "short-circuiting" of subsurface flow, but also in part to the increased aeration of organic-rich soils with potentially increased mineralization and formation of NO₃ (and less denitrification) in the soil profile.

The problem of excess nutrient loads can probably be ameliorated by a combination of in field and off site practices, but the limitations and appropriateness of alternative practices must be understood and outcomes must be measurable. Promising in field practices include nutrient management, drainage management, and alternative cropping systems. Nitrate-removal wetlands are a proven edge-of-field practice for reducing nitrate loads to downstream water bodies and are a particularly promising approach in tile drained landscapes. Strategies are needed that can achieve measurable and predictable reductions in the export of nutrients from tile drained landscapes. The principal objectives of this project are (1) to evaluate the performance of nutrient management, drainage management, and alternative cropping systems with respect to profitability and export of water and nutrients (nitrate-nitrogen and total phosphorus) from tile drained systems and (2) to evaluate the performance of nitrate-removal wetlands in reducing nitrate export from tile drained systems.

This annual report describes activities related to objectives 1 and 2 along with outreach activities that were directly related to this project. For objective 1, crop years 2005, 2006, 2007, 2008, and 2009 are presented. Also, outreach activities are noted for 2005, 2006, 2007, 2008, and 2009 to provide an overall project summary.

Gilmore City Project Site

Treatments

The specific treatments investigated at the Gilmore City Research Facility (GCRF) are listed in Table 1. All treatments except the harvestable perennials consist of eight plots with four in soybeans and four in corn each year. The harvestable perennials each have four plots. The harvestable perennials were investigated during the winter of 2004 and planted in spring 2005 after discussion with the investigators and IDALS personnel.

The treatments included allow for varied comparisons as follows:

- ... Timing of nitrogen application (treatments 1,2 and 3,4 vs. 5,6 and 7,8)
- ... Rate of nitrogen application (treatments 1,2 vs. 3,4 and 5,6 vs. 7,8 vs. 9,10)
- ... Method of nitrogen application (treatments 7,8 vs. 15,16)
- ... Potential impacts of tillage (treatments 7,8 vs. 11,12)
- ... Cropping practices through the use of a winter cover crop (treatments 7,8 vs. 13,14)

... Impacts of complete conversion to perennial vegetation (treatments 17 and 18 vs. other treatments)

Treatment	Treatment	Nitrogen Application	
Number*		Time	Rate (lb/acre)
1,2	Conventional tillage	Fall	75
3,4	Conventional tillage	Fall	125
	-	Spring (early season	
5,6	Conventional tillage	sidedress)	75
	-	Spring (early season	
7,8	Conventional tillage	sidedress)	125
		Spring (early season	
9,10	Conventional tillage	sidedress)	150
	-	Spring (early season	
11,12	Strip tillage	sidedress)	125
	Cover crops after harvest	Spring (early season	
13,14	-	sidedress)	125
	LCD every other row	Spring (early season	
15,16	application	sidedress)	125
17	Kura clover	-	no fertilizer
	Orchardgrass +	-	
18	Red/Ladino clover		no fertilizer

Table 1. Treatments at the Gilmore City Research Facility for Crop Years 2005-2009.

* within the corn and soybean rotation treatments, even numbers are soybean and receive no nitrogen.

These treatments allow for comparison of existing questions related to lower rates of nitrogen application and the potential impacts of fall nitrogen fertilizer application. Additionally, the LCD method of application is being investigated to determine if this application method can reduce nitrate leaching. Inclusion of the strip tillage system will investigate and demonstrate a minimal tillage system and assess its impacts on crop yield and nitrate leaching. Inclusion of cover crops and harvestable perennials allows for evaluating alternative cropping practices and the impact on nutrient movement and drainage. Evaluation of these alternatives is important for considering progressive methods for minimizing nutrient transport from tile-drained landscapes. The concentration and loading of nutrients exiting the various treatments will be monitored and evaluated on an annual basis and for the five year study period, 2005-2009. In addition, crop yield will be documented each year to evaluate treatment effects on yield, specifically whether there are declines in annual yield at the lower nitrogen rate applications. The evaluation of the treatment effects will be for the study period but each year will be analyzed to evaluate treatment effects on a yearly basis and after the completion of this phase of the research study. It is understood that climatic variability plays a significant role in the leaching of nutrients in the tile drained landscape.

From this, it is important to have numerous years of leaching data to evaluate the treatment effects both from a production (crop yield) perspective and a nutrient leaching perspective. The multiple years of data allows for evaluating how the treatments respond under varying climatic conditions and after subsequent years with similar cropping practices. Also, these multiple years

of data allow for additional characterization of tile flow under varied precipitation conditions and allow for further understanding of the hydrology of the site.

Agronomic Activities in 2005, 2006, 2007, 2008, and 2009

Agronomic field activities were completed in a timely manner prior to and during the crop season. Rye for 2005 was seeded on October 15, 2004. Fall chisel plowing was performed on November 2-3, 2004. Fall fertilization was completed on November 15, 2004. Tillage for seedbed preparation was completed in the spring just prior to planting of perennial crops on April 18th and followed by 0.72" of precipitation. Round Up herbicide was applied on April 14, 2005 in the rye/corn system and in rye/soybean plots on May 24. Seedbed preparation for corn and soybean was also completed just prior to May 3 and 4 seeding dates. Fertilizer was applied just after corn crop emergence on May 12-13, 2005. Rye for 2006 was planted on October 11, 2005. Fall chisel plowing of corn residue was performed on November 14, 2005. Fall fertilization for 2006 was completed on November 21, 2005. Field activities in 2006 were completed in a timely manner prior to and during the crop season. Seedbed preparation for corn and soybean was completed just prior to May 4 corn seeding date. Soybean was seeded on May 10. Fertilizer was applied just after corn crop emergence on May 17-18th. Rye cover crop in corn plots was sprayed to eliminate on April 24. Soybean rye cover crop plots were sprayed to eliminate rye on May 16. Rye for 2007 was planted on October 12, 2006. Fall fertilization for 2007 was completed on November 21, 2006. Fall tillage (chisel plow of corn residue) was performed on November 22, 2006. In 2007, seedbed preparation for corn and soybean was completed just prior to May 14 corn seeding date. Soybean was seeded on May 17. Fertilizer was applied just after corn crop emergence on June 5th. Rye cover crop in corn plots was sprayed to eliminate rye on April 30. Soybean rye cover crop plots were sprayed to eliminate rye on May 23. Rye for 2008 was planted on October 25, 2007. Fall fertilization for 2008 was completed on November 13, 2007. Fall tillage (chisel plow of corn residue) was performed on November 21, 2007. In 2008, seedbed preparation for corn and soybean was completed just prior to the May 14 corn seeding date. Soybean was seeded on May 19. Fertilizer was applied just after corn crop emergence on June 4th. Rye cover crop in corn plots was sprayed to eliminate rye on May 5. Soybean rye cover crop plots were sprayed to eliminate rye on May 23. In 2009, seedbed preparation for corn and soybean was completed on May 15. All planting was done on May 19. Fertilizer was applied between June 30 and July 2. Rye cover crop in corn plots was sprayed to eliminate rye on May 8. Soybean rye cover crop plots were sprayed to eliminate rye on May 31.

Weed Control 2005, 2006, 2007, 2008 and 2009

Round Up ready crops were used at the site in 2005. Dual II was used for pre-plant weed control and was broadcast on May 10, 2005. First application of Round Up was on May 21, 2005. Second application was on June 17, 2005.Weed control was acceptable in most soybean plots; poor control of lambsquarter was noted in 6 of 32 plots, likely due to sprayer malfunction or poor herbicide application timing. Corn weed control was superior; no specific weed control problems were observed. Cultivation for weed control was not incorporated in the weed management system.

Round Up ready crops were again used at the site in 2006. Dual II was used for pre-plant weed control and was broadcast on May 22, 2006. First application of Round-Up for weed control was

on May 22 for strip till plots; all other plots had first application on June 2, 2006. Second application was on June 19, 2006 in corn plots only. Soybeans had second application on June 22, 2006. Weed control was acceptable in most soybean plots; poor control of lambsquarter was noted in the strip till plots, for both corn and soybean due to poor herbicide application timing. Corn weed control in all other treatments was superior except as mentioned in strip till plots; no specific weed control problems were observed. Cultivation for weed control was not incorporated in the weed management system.

As in the first two years, Round Up ready crops were used at the site in 2007. Dual II was used for pre-plant weed control and was broadcast on May 31. First application of Round-Up for weed control was on May 31. Second application was on June 13, 2007. Weed control was acceptable in soybean plots; poor control of lambsquarter and dandelion was noted in the strip till plots, for both corn and soybean due to poor herbicide application timing. Corn weed control in all other treatments was superior except as mentioned in strip till plots; no specific weed control problems were observed. Cultivation for weed control was not incorporated in the weed management system.

As in the first three years, Round Up ready crops were used at the site in 2008. First application of Round-Up for weed control was on May 28. Second application was on June 16-19, 2008. Weed control was acceptable in most plots; however, there was poor control of lambsquarter, grasses, and dandelion in some plots. Cultivation for weed control was not incorporated in the weed management system.

As in the first four years, Round Up ready crops were used at the site in 2009. First application of Round-Up for weed control was on June 2. Second application for corn was on July 2, 2009. Cultivation for weed control in the bean plots was incorporated into the weed management system due to canopy damage from a hail storm on July 22.

Precipitation 2005, 2006, 2007, 2008 and 2009

Precipitation was recorded at the site in 2005 from April through November; freezing weather (Jan-March and December) precipitation was obtained from NOAA weather stations in Pocahontas and Humboldt (Table 2). January through March precipitation in 2005 was slightly below normal at the site. April, May and June were each above normal (0.4" to 1.15" higher). July precipitation was nearly 2", August nearly 3" and September 1.4" below normal. March through November total was 6.47" below normal. Highest individual storm event precipitation was on June 25-26 when 2.65" were recorded.

Precipit	ation at t	he GCRF ir	n 2005	NOAA weather stations in 2005
			normal*	Pocahontas Humboldt average
	mm	inches	inches	inches
Jan	-	-	0.91	0.62 0.60 0.61
Feb	-	-	0.70	1.77 1.60 1.69
Mar	-	-	2.20	1.33 1.07 1.20
Apr	89	3.49	3.09	3.32 3.61 3.47
May	129	5.09	3.94	5.85 4.15 5.00
Jun	134	5.27	4.37	7.46 8.89 8.18
Jul	63	2.47	4.37	3.82 4.42 4.12
Aug	45	1.76	4.60	1.41 3.20 2.31
Sep	39	1.53	3.16	3.38 4.54 3.96
Oct	20	0.79	2.17	1.00 0.59 0.80
Nov	43	1.69	1.86	1.50 2.18 1.84
Dec	-	-	1.37	1.54 1.23 1.39
total			32.74	33.00 36.08 34.54

Table 2. Precipitation in 2005 at the Gilmore City Research Facility (GCRF) and comparisons to norms and amounts at local NOAA weather stations.

* From: Climatological Data for Iowa, National Climate Data Center for Pocahontas Iowa 1971-00. Precipitation was recorded at the site in 2006 from March through November; freezing weather (Jan-Feb and December) precipitation was obtained from NOAA weather stations in Pocahontas and Humboldt (Table 3). January and February precipitation was slightly below normal. March and April were each above normal (0.51 and 0.57" higher). May, June and July were all well below normal, with August and September slightly above normal. March through November total was 8.59" below normal. Highest individual storm event precipitation was on August 9 when 2.32" was recorded.

Table 3. Precipitation in 2006 at the research site and comparisons to norms and amounts at local NOAA
weather stations.

Precipit	ation at t	he GCRF ir	n 2006	NOAA weather stations in 2006
			normal*	Pocahontas Humboldt average
	mm	inches	inches	inches
Jan	-	-	0.91	0.46 0.45 0.46
Feb	-	-	0.70	0.43 0.54 0.49
Mar	69	2.71	2.20	3.74 2.87 3.31
Apr	93	3.66	3.09	4.22 3.54 3.88
May	14	0.87	3.94	0.92 2.08 1.50
Jun	56	2.39	4.37	1.58 1.96 1.77
Jul	26	1.10	4.37	2.64 1.79 2.22
Aug	46	5.30	4.60	5.01 4.39 4.70
Sep	56	3.60	3.16	3.18 4.50 3.84
Oct	19	0.76	2.17	0.70 1.46 1.08
Nov	20	0.78	1.86	1.36 1.36 1.36
Dec	-	-	1.37	1.69 2.04 1.87
total			32.74	25.93 26.98 26.46

* From: Climatological Data for Iowa, National Climate Data Center for Pocahontas Iowa 1971-00

Precipitation was recorded at the site in 2007 from March through November; freezing weather (Jan-Feb and December) precipitation was obtained from NOAA weather stations in Pocahontas and Humboldt (Table 4). January, February, April and May precipitation was above normal. March was slightly below normal. As in 2006, June and July were both well below normal, with August 8.62" above normal and September and October only slightly above normal. March through November total was 3.52" above normal. Highest individual storm event precipitation was on August 21 when 3.70" was recorded.

Precipit	ation at tl	he GCRF ir	n 2007	NOAA weather stations in 2007
			normal*	Pocahontas Humboldt average
	mm	inches	inches	inches
Jan	-	-	0.91	1.20 1.44 1.32
Feb	-	-	0.70	1.57 1.54 1.56
Mar	46	1.80	2.20	2.31 2.20 2.25
Apr	83	3.27	3.09	4.09 4.70 4.40
May	90	3.54	3.94	4.68 4.38 4.53
Jun	44	1.75	4.37	1.62 2.58 2.10
Jul	41	1.63	4.37	1.19 2.84 2.02
Aug	336	13.22	4.60	13.01 16.68 14.85
Sep	97	3.82	3.16	3.27 2.95 3.11
Oct	107	4.22	2.17	4.23 4.32 4.28
Nov	1	0.03	1.86	0.05 0.05 0.05
Dec	-	-	1.37	1.86 1.48 1.67
total			32.74	39.08 45.16 42.12

 Table 4. Precipitation in 2007 at the research site and comparisons to norms and amounts at local NOAA weather stations.

* From: Climatological Data for Iowa, National Climate Data Center for Pocahontas Iowa 1971-00

Precipitation was recorded at the site in 2008 from March through November; freezing weather (Jan-Feb, part of November and December) precipitation was obtained from NOAA weather stations in Pocahontas and Humboldt (Table 5). January and March precipitation was below normal; however, February and April through June precipitation was above normal. July precipitation was comparable to normal. The lower precipitation amounts in August and September were countered by higher rainfall in October.

Precip	itation a	t the GCR	F in 2008	NOAA weather stations in 2008
			normal*	Pocahontas Humboldt average
	mm	inches	inches	inches
Jan	-	-	0.91	0.50 0.56 0.53
Feb	-	-	0.7	1.24 0.96 1.10
Mar	35	1.37	2.2	1.34 0.86 1.10
Apr	88	3.45	3.09	3.34 5.02 4.18
May	151	5.96	3.94	6.88 5.97 6.43
Jun	152	5.97	4.37	5.67 9.40 7.54
Jul	105	4.12	4.37	5.37 3.85 4.61
Aug	80	3.16	4.6	2.08 1.52 1.80
Sep	65	2.55	3.16	1.94 1.84 1.89
Oct	100	3.94	2.17	4.01 3.82 3.92
Nov	37	1.46	1.86	1.65 1.80 1.73
Dec	-	-	1.37	2.62 1.31 1.97
total			32.74	<u>36.64</u> <u>36.91</u> <u>36.78</u>

 Table 5. Precipitation in 2008 at the research site and comparisons to norms and amounts at local NOAA weather stations.

* From: Climatological Data for Iowa, National Climate Data Center for Pocahontas Iowa 1971-00

Precipitation was recorded at the site in 2009 from April through November; freezing weather (Jan-March and part of December) precipitation was obtained from NOAA weather stations in Pocahontas and Humboldt (Table 6). January precipitation was above normal; however, February through June and August and September precipitation was below normal. July and October precipitation was above normal. The lower precipitation amounts for the majority of the year were partially countered by higher rainfall in October.

Precip	itation a	at the GCR	F in 2009	NOAA weather stations in	n 2009
			normal*	Pocahontas Humboldt a	iverage
	mm	inches	inches	inches	
Jan	-	-	0.91	1.18 0.84	1.01
Feb	-	-	0.7	0.64 0.72	0.68
Mar	-	-	2.2	1.22 2.01	1.62
Apr	53	2.09	3.09	1.86 2.30	2.08
May	81	3.17	3.94	2.67 3.66	3.17
Jun	85	3.33	4.37	4.27 2.51	3.39
Jul	130	5.11	4.37	3.76 -	3.76
Aug	66	2.59	4.6	2.85 -	2.85
Sep	42	1.64	3.16	1.04 -	1.04
Oct	142	5.59	2.17	5.03 5.56	5.30
Nov	25	0.99	1.86	1.09 0.86	0.98
Dec	-	-	1.37	0.65 0.81	0.73
total			32.74	26.26	26.59

 Table 6. Precipitation in 2009 at the research site and comparisons to norms and amounts at local NOAA weather stations.

* From: Climatological Data for Iowa, National Climate Data Center for Pocahontas Iowa 1971-00

Drainage 2005, 2006, 2007, 2008 and 2009

Average soil temperature at a 4" depth rose above freezing in 2005 on March 22 and continued to rise. Treatment plot sampling pumps were installed during the last week of March. Drainage started during this period and the first samples were collected on April 1st. Eighteen of the seventy-two plots had enough drainage to provide a sample on this date. By April 7th, fourteen additional plots were sampled. Samples were collected on at least a weekly basis, and for most plots, drainage was sufficient for sampling through the month of June. Only ten plots had drainage in July; the last samples were gathered on July 26th. Table 7 lists drainage volumes by treatment in 2005 with statistical differences at p=0.05. Five of the eighteen treatments had one of four replications removed due to excessive drainage volume values. Statistical differences among treatments were noted for four of eighteen treatments (LSD=7.22 inches). Average drainage for all treatments was 8.45 inches. When the treatments were grouped by crop (C vs. S) it was noted that there was a significant difference between crops, with soybean having a lower value (C=10.17", S=7.19") possibly related to tillage operations performed prior to the drainage season. With 23.29" of precipitation between March 1 and November 30 and using an overall drainage volume of 8.45", approximately 36% of the precipitation became subsurface drainage. Nearly half of the precipitation amount that occurred between March and the end of July, when drainage ceased, became subsurface drainage (see Table 7). The site was winterized on December 5. Average soil temperature at 4" depth did not drop below freezing in December 2005 in the region.

Average soil temperature at a 4"depth rose above freezing in 2006 on March 11 and remained steady and began to rise after the 17th of March. Treatment plot sampling pumps were installed

on March 28th. After installation, 0.92" of rainfall was recorded on March 30-31st, 2006 and subsurface drainage began thereafter and the first samples were collected on April 1st. Forty-nine of the seventy-two plots had enough drainage to provide a sample on this date. Samples were collected on at least a weekly basis, and for most plots, drainage was sufficient for sampling through the first week of May. All drainage ceased on May 10, 2006. Table 7 lists drainage volumes by treatment in 2006 with statistical differences at p=0.05. Nine of the eighteen treatments had one of four replications removed due to erroneous (usually excessive because of pump malfunction in an adjacent sump) drainage volume values. No statistical differences among treatments were noted for drainage in 2006 (LSD=2.08 inches). Average drainage for all treatments was 3.60 inches. When the treatments were grouped by crop, no significant difference between crops was noted as was in 2005. With 15.70" of precipitation between March 1 and November 30 and using an overall drainage volume of 3.60", approximately 23% of the precipitation became subsurface drainage. Nearly half of the precipitation amount that occurred between March and the middle of May, when drainage ceased, became subsurface drainage (see Table 8). The site was winterized on November 28, 2006. Average soil temperature at 4" depth fell below freezing on December 3, 2006.

Average soil temperature at a 4"depth rose above freezing in 2007 on March 13 and remained steady and began to rise after the 17th of March. Treatment plot sampling pumps were installed on March 20th. After installation, 0.60" of rainfall was recorded on March 21-24th, 2007 and subsurface drainage began thereafter and the first samples were collected on March 26th. Forty of the seventy-two plots had enough drainage to provide a sample on this date. Samples were collected on at least a weekly basis, and for most plots, drainage was sufficient for sampling through the first week of June. All drainage ceased after the 1st week of June and commenced the third week of August after 10.5 inches was recorded in the preceding week. At least weekly samples were also available from the 3rd week of September until the end of October, a rather atypical drainage period. Table 7 lists drainage volumes by treatment in 2007 with statistical differences at p=0.05. Only one of the eighteen treatments had one of four replications removed due to erroneous (usually excessive, because of pump malfunction in an adjacent sump) drainage volume values. All other replications were used in statistical analysis. No statistical differences among treatments were noted for drainage in 2007 (LSD=10.51 inches). Average drainage for all treatments was 19.94 inches (5.5x the drainage of 2006 and 2.4x that of 2005). When the treatments were grouped by crop, no significant difference between crops was noted. With 33.28" of precipitation between March 1 and November 30 and using an overall drainage volume of 20.38", approximately 61% of the precipitation became subsurface drainage. April and October both had more drainage than precipitation, likely caused by drainage delay from the previous month's precipitation (see Table 8). The site was winterized on November 19, 2007. Average soil temperature at 4" depth fell below freezing on November 28, 2007.

Average soil temperature at a 4"depth rose above freezing in 2008 on March 22 and steadily began to rise. Treatment plot sampling pumps were installed on March 17th. Subsurface drainage for most plots began between March 25th and April 1st with the first samples (6) being collected on March 25th. Forty-two of the seventy-two plots had enough drainage to provide a sample on April 1st. Samples were collected on at least a weekly basis, and for most plots, drainage was sufficient for sampling through the third week of June. All drainage ceased after the 1st week of July but a storm the middle part of July produced another round of sampling. Samples started to

be collected again the second week of October and commenced the third week of November. Table 7 lists drainage volumes by treatment in 2008 with statistical differences at p=0.05. Six of the eighteen treatments had one of four replications removed due to erroneous (usually excessive) drainage volume values. All other replications were used in statistical analysis. No statistical differences among treatments were noted for drainage in 2008 (LSD=10.40 inches). Average drainage for all treatments was 18.78 inches (0.94x the drainage of 2007, 5.22x the drainage of 2006 and 2.22x that of 2005). With 31.99" of precipitation between March 1 and November 30 and using an overall drainage volume of 18.78", approximately 59% of the precipitation became subsurface drainage. June had much more drainage than precipitation; however there was a 3" rainfall at the very end of May, which would cause substantial drainage in early June (see Table 8). The site was winterized between October 27 and November 17, 2008. Average soil temperature at 4" depth fell below freezing on December 6, 2008.

Average soil temperature at a 4" depth rose above freezing in 2009 on March 18 and steadily began to rise. Treatment plot sampling pumps were installed between March 18 and 25. Subsurface drainage for most plots also began between March 18 and 25 with the first samples being collected in April. Samples were collected on a weekly basis, and for many plots, drainage was sufficient for sampling through the end of July. Nearly all drainage ceased after August 4th. Samples started to be collected again the third week of October and commenced until the December 1. Table 7 lists drainage volumes by treatment in 2009 with statistical differences at p=0.05. Six of the eighteen treatments had one of four replications removed due to erroneous (usually excessive) drainage volume values. All other replications were used in statistical analysis. Overall, no statistical differences among treatments were noted for drainage in 2009 (LSD=11.49 inches), except LCD treatments had significantly lower drainages than Fall corn treatments (Table 7). Average drainage for all treatments was 11.76 inches (0.69x the drainage of 2008, 0.59x the drainage of 2007, 3.27x the drainage of 2006 and 1.39x that of 2005). With 24.51" of precipitation between April 1 and November 30 and using an overall drainage volume of 11.16", approximately 46% of the precipitation became subsurface drainage. October had more drainage than precipitation; however the rain in September occurred at the end of the month resulting in carryover drainage into October (see Table 8). The site was winterized on December 7, 2009. Average soil temperature at 4" depth fell below freezing on December 10, 2009.

Treatme	ntDescription		Drainag	ge	(inches)	
		2005	2006	2007	2008	2009
1	Fall 75 Corn (c-s)	12.03a	3.33a	21.01a	19.43a	19.76a
2	Fall 75 Soybean (s-c)	7.14ab	3.81a	20.03a	17.62a	12.18abc
3	Fall 125 Corn (c-s) ^{3,4}	11.07ab	3.85a	19.98a	17.21a	17.43ab
4	Fall 125 Soybean (s-c) ^{1,2,4}	7.31ab	3.23a	14.94a	15.20a	16.06abc
5	Spring 75 Corn (c-s)	11.72ab	3.63a	22.66a	19.30a	8.10abc
6	Spring 75 Soybean (s-c)	5.27ab	3.52a	17.96a	16.61a	8.35abc
7	Spring 125 Corn (c-s) ^{1,2,4}	4.70b	3.67a	19.22a	12.02a	9.17abc
8	Spring 125 Soybean (s-c) ²	5.95ab	3.08a	15.09a	16.47a	8.58abc
9	Spring 150 Corn $(c-s)^2$	12.49a	3.07a	22.77a	19.05a	13.32abc
10	Spring 150 Soybean $(s-c)^2$	7.55ab	4.21a	20.63a	17.44a	10.39abc
11	Strip 125 Corn (c-s) ^{1,2,4}	9.70ab	3.91a	22.03a	16.65a	16.46abc
12	Strip 125 Soybean (s-c) ^{1,4}	4.80b	4.56a	17.70a	15.36a	8.67abc
13	Cover Crop 125 Corn $(c-s)^{1,2}$	6.98ab	3.30a	21.45a	17.29a	7.89bc
	Cover Crop 125 Soybean (s-					
14	$c)^2$	10.53ab	3.70a	22.71a	20.32a	16.22abc
15	LCD 125 Corn (c-s)	9.65ab	4.04a	20.58a	18.22a	6.66c
16	LCD 125 Soybean (s-c)	6.78ab	3.51a	21.73a	15.81a	6.62c
17	Kura clover	10.08ab	3.59a	21.17a	18.49a	13.75abc
	Orchardgrass + Red/Ladino					
18	clover ^{2,4}	8.29ab	2.62a	17.19a	15.15a	9.55abc
LSD		7.22	2.08	10.51	10.40	11.24
average	drainage	8.45	3.6	19.94	17.09	11.16
standard	deviation	2.53	1.43	2.45	1.98	4.12
average	for corn treatments	10.17	3.67	21.21	17.40	11.83
average	for soybean treatments	7.19**	3.62	18.85	16.85	10.73

Table 7. Subsurface drainage volumes with statistical differences at p=0.05, by treatment in 2005, 2006, 2007, 2008 and 2009. Statistical comparisons are within years only.

¹one of four reps not included in 2005 because of erroneous drainage value. ³one of four reps not included in 2007 because of erroneous drainage value.

⁴ one of four reps not included in 2008 because of erroneous drainage value.

** significantly different from drainage for corn treatments at p=0.05.

The (c-s) or (s-c) indicates the rotation order starting in 2005.

		2005			2006			2007			2008			2009	
	precip	drainage	%	precip	drainage	%	precip	drainage	%	precip	drainage	%	precip	drainage	%
		inches			inches			inches -			inches			inches	
March	1.2	-	0	2.71	-	0	1.8	0.49	27	1.37	0.01	0	1.62	0.00	0
April	3.49	2.82	81	3.66	2.38	65	3.27	4.38	134	3.45	4.11	119	2.09	1.14	55
May	5.09	3.23	63	0.87	1.62	186	3.54	1.41	40	5.96	3.75	63	3.17	1.18	37
June	5.27	2.46	47	2.39	-	0	1.75	0.24	14	5.97	9.33	156	3.76	0.76	20
July	2.47	0.12	5	1.1	0.22	0	1.63	-	0	4.12	0.17	4	5.11	1.98	39
August	1.76	-	0	5.3	-	0	13.22	8.20	62	3.16	0.00	0	2.59	0.05	2
September	1.53	-	0	3.6	-	0	3.82	0.14	4	2.55	0.00	0	1.64	0.00	0
October	0.79	-	0	0.76	-	0	4.22	5.52	131	3.94	0.66	17	5.59	5.97	107
total	21.6	8.63	40	20.39	4.22	21	33.25	20.38	61	30.53	18.02	59	25.57	11.07	43

Table 8. Average annual drainage for each month over all treatments with totals and percentage as drainage for April-July 2005, 2006, 2007, 2008 and 2009.

Nitrate Concentrations and Losses 2005, 2006, 2007 and 2008

Previous history of current plot treatments quite likely has influenced the nitrate-nitrogen concentrations observed during 2005 and to some extent those in 2006. The majority of plots received 150 or 200 lbs N/acre during the period of 2000-2004 either as manure or aqua ammonia in the spring or fall. Some plots would have received 225 lbs of ammonia, each season. The previous experimental phase also included a split plot methodology with both corn and soybean grown on each plot, as opposed to the current phase utilizing whole plots, which has also contributed to and confounded the 2005 results. No definitive treatment effect trends should be derived from 2005 concentration results. Some treatment effect trends began to emerge in 2006.

In 2005, 535 flow weighted water samples were gathered. Table 9 lists the treatment results. Only the highest and three lowest average concentrations, out of eighteen compared, exhibited significant differences at p=0.05 level. The highest NO₃-N average concentration (18.8 mg/L NO₃-N) was observed in a treatment that was in the soybean year of the rotation and received no nitrogen in 2005. In the previous phase, two of the four replications for this treatment received 225 lbs N/acre and is quite likely a major factor in the elevated levels of NO₃-N observed. Lowest concentration observed was for two treatments: strip tillage 125 and LCD 125 cropped to corn, both averaged 12.9 mg/L NO₃-N.

The highest concentrations in 2006 were recorded for the 150 rate treatment within the soybean year (N applied in 2005 and years prior) and lowest were found in the perennial systems, specifically the Kura clover treatment; all other values were between these treatments values. Annual flow-weighted concentrations ranged from 6.9 to 21.7 mg L⁻¹. Individual, flow weighted averages ranged from 4.5 to 30.1 mg L⁻¹ and were recorded within the aforementioned treatments. Average flow weighted values for most treatments only showed minor differences in their NO₃-N concentrations when compared. No significant differences were noted when comparing the fall and spring applications to each other across rates or crops or when rates were compared within the spring application rate treatment only. Use of the LCD applicator compared to a conventional knife also showed no significant differences in resulting concentrations. The use of a cover crop or strip tillage system in either crop also did not exhibit any significant effects on NO₃-N concentrations. The only significance was shown when comparing the N rate treatments within the soybean year of the corn soybean cropping system; nitrate in drainage from

the previous season(s) applications at the 150 rate was significantly different than the 75 and 125 rates. Table 9 lists all treatments by year and the statistical differences at the p=0.05 level.

As opposed to 2006, highest concentrations in 2007 were recorded for the 150 rate treatment within the corn year (concentrations were highest in the soybean year in 2006 for the 150 rate) and lowest were found in the perennial systems, specifically the orchardgrass/clover treatment; all other values were between these treatments values. Annual flow-weighted concentrations ranged from 4.4 to 20.3 mg L⁻¹. Individual plot/replication, flow weighted averages ranged from 2.2 to 23.6 mg L^{-1} and were recorded within the aforementioned treatments. Average flow weighted values for most treatments only showed minor differences in their NO₃-N concentrations when compared. No significant differences were noted when comparing the fall and spring applications to each other across rates or crops. Use of the LCD applicator compared to a conventional knife also showed no significant differences in resulting concentrations. The use of a cover crop or strip tillage system in either crop also did not exhibit any significantly different effects on NO₃-N concentrations. However, while not significantly different, on an absolute basis NO₃-N concentrations were between 9% and 23% lower in the treatments with winter cover crops. Significance was noted when comparing the N rate treatments. Nitrate in drainage from the previous season(s) applications at the 150 rate was significantly different than the 75 and 125 rates. Table 9 lists all treatments by year and the statistical differences at the p=0.05 level.

Just like in 2007, highest concentrations in 2008 were recorded for the 150 rate treatment (treatment 9); however, 2008 was a soybean year as opposed to corn in 2007 and lowest were found in the perennial systems, specifically the orchardgrass/clover treatment (treatment 18); all other concentrations were between these treatments values. Annual flow-weighted concentrations ranged from 3.0 to 20.1 mg L⁻¹. Individual plot/replication, flow weighted averages ranged from 1.0 to 24.6 mg L^{-1} and were recorded within the aforementioned treatments. No significant differences were noted when comparing the fall and spring applications to each other across rates or crops. Use of the LCD applicator compared to a conventional knife also showed no significant differences in resulting concentrations. Treatment 14, which is a cover crop in corn for 2008, had a significantly lower NO₃-N concentration than treatment 4, fall application in corn for 2008. Treatment 14 was not significantly lower than other comparable spring application treatments (treatments 8, 12, 16). Treatment 13, cover crop in soybeans for 2008 was not significantly different than any comparable treatments (treatments 3, 7, 11, 15). The strip tillage system in either crop did not exhibit any significantly different effects on NO₃-N concentrations. Significance was noted when comparing the N rate treatments. Treatment 9, which was planted with soybeans in 2008, had the highest nitrate concentrations of all treatments. Table 9 lists all treatments by year and the statistical differences at the p=0.05 level.

Similar to previous years, highest NO₃-N concentrations in 2009 were recorded for the 150 rate treatment within both the corn year and soybean year, and lowest were found in the perennial systems, specifically the orchardgrass/clover treatment; all other values were between these treatments values. Individual plot/replication, flow weighted averages ranged from 1.5 to 23.3 mg L⁻¹ and were recorded within the aforementioned treatments. No significant differences were noted when comparing the fall and spring applications to each other across rates or crops. Use of

the LCD applicator compared to a conventional knife also showed no significant differences in resulting concentrations. The use of a cover crop or strip tillage system in either crop also did not exhibit any significantly different effects on NO₃-N concentrations. NO₃-N in drainage from the previous season(s) applications at the 150 rate (treatments 9 and 10) was significantly higher than the 75 and 125 rates. Table 9 lists all treatments by year and the statistical differences at the p=0.05 level.

Treatment	Description	Nitrate N	(mg/L)			
		2005	2006	2007	2008	2009
1	Fall 75 Corn (c-s)	14.5ab	17.3abc	10.6cd	9.5f	10.8c
2	Fall 75 Soybean (s-c)	17.8ab	10.4efg	11.1bcd	15.7b	11.9bc
3	Fall 125 Corn (c-s)	14.5ab	16.0bcd	13.8b	11.5ef	11.2bc
4	Fall 125 Soybean (s-c)	13.5ab	14.0bcdef	11.6bcd	14.9bc	10.9bc
5	Spring 75 Corn (c-s)	13.5ab	18.3ab	10.0de	9.7f	11.2bc
6	Spring 75 Soybean (s-c)	18.8a	12.0def	13.5bc	14.5bcd	11.9bc
7	Spring 125 Corn (c-s)	18.1ab	15.4bcd	12.9bcd	12.1def	13.0bc
8	Spring 125 Soybean (s-c)	17.0ab	13.6bcdef	12.9bcd	13.0bcde	11.8bc
9	Spring 150 Corn (c-s)	16.3ab	15.7bcd	20.3a	20.1a	19.7a
10	Spring 150 Soybean (s-c)	15.8ab	21.7a	17.6a	15.8b	17.0a
11	Strip 125 Corn (c-s)	12.9b	14.1bcdef	11.5bcd	9.9f	11.5bc
12	Strip 125 Soybean (s-c)	14.2ab	13.4cdef	11.4bcd	12.1def	11.3bc
13	Cover Crop 125 Corn (c-s)	13.9ab	15.2bcd	11.7bcd	12.3cdef	12.6bc
14	Cover Crop 125 Soybean (s-c)	14.4ab	11.4defg	9.9de	11.4ef	11.0bc
15	LCD 125 Corn (c-s)	12.9b	14.8bcde	12.1bcd	12.4cdef	11.6bc
16	LCD 125 Soybean (s-c)	16.1ab	12.8cdef	11.3bcd	13.3bcde	13.6b
17	Kura clover	13.1b	6.9g	7.4ef	6.1g	6.7d
18	Orchardgrass + Red/Ladino clover	14.7ab	9.7fg	4.4f	3.0h	2.6e
	LSD	5.4	4.8	3.2	2.8	2.8

Table 9. Average annual flow weighted nitrate concentrations by treatment in 2005, 2006, 2007, 2008 and 2009 with statistical significance at p=0.05. Statistical comparisons are within years only.

The (c-s) or (s-c) indicates the rotation order starting in 2005.

Table 10 lists NO₃-N losses by treatment in 2005, 2006, 2007, 2008 and 2009. Losses were calculated by multiplying subsurface drainage effluent concentration by drainage volume. Due to the inherent variability between experimental plots and among treatments, loss calculations for one year may not be the best indicator of treatment effect. Losses in 2005 ranged from 17.4 lbs/acre NO₃-N for soybean grown under a strip tillage system, with no fertilizer added in 2005 to 41.1 lbs/acre NO₃-N exiting the subsurface drainage system for an early season sidedress application of 150 lbs N/acre on corn. (Fertilizer was applied on May 12-13.) These two treatments were the only statistically different (p=0.05) treatments for loss in 2005.

Losses in 2006 were much below those recorded in 2005 not because of a major drop in concentrations (except for the perennial systems, which did drop substantially) but because drainage volumes were approximately 42% of those recoded in 2005. Losses ranged from 5.2 to 16.5 lbs/acre for the Kura clover treatment and 150 spring applied nitrogen treatment in the soybean year of the rotation, respectively (N applied on May 17-18, 2006 in the corn year). Statistical differences were noted when comparing the spring 150 soybean treatment to both the fall 75 soybean and the perennial systems as listed in Table 10.

Losses in 2007 were the highest recorded since the initiation of this treatment phase in 2005. The increase in loss was due to large drainage volumes in 2007 compared to previous years. Average drainage volume was 2.3 times that recorded in 2005 (5.5 times that of 2006) and the losses increased accordingly. Losses ranged from 18.6 to 101.6 lbs N/acre for the orchardgrass/clover treatment and 150 spring applied nitrogen treatment in the corn year of the rotation, respectively (N applied on June 5, 2007 in the corn year). One-third of the 150 rate loss in corn was prior to N application in 2007. Statistical difference was noted when comparing the spring 150 corn treatment compared to all other treatments except for the soybean 150 treatment as listed in Table 10.

Losses in 2008 were slightly lower than in 2007. This follows the drainage volume trend (Table 8) with 2008 drainage being slightly less (~2 inches) than in 2007. Losses ranged from 9.0 to 84.3 lbs N/acre for the orchardgrass/clover treatment and 150 spring applied nitrogen treatment in the soybean year of the rotation, respectively (N applied on June 4, 2008 in the corn year). Statistical difference was noted when comparing treatments 9 and 10, the corn soybean rotation receiving 150 lb/acre N in the corn years, compared to all other treatments except for treatment 2 which was planted with corn in 2008. All statistical comparisons are listed in Table 10.

Losses in 2009 were lower than in 2007 and 2008 due to lower drainage volumes in 2009 compared to previous two years. Losses ranged from 7.1 to 52.1 lbs N/acre for the orchardgrass/clover treatment and 150 spring applied nitrogen treatment in the corn year of the rotation, respectively (N applied on June 30-July 2, 2009 in the corn year). Statistical differences were noted when comparing the spring 150 soybean treatment and the fall 75 corn to both the LCD 125 soybean and the perennial systems as listed in Table 10.

Total Reactive Phosphorus 2005, 2006, 2007 and 2008

Total reactive phosphorus (TRP) concentrations were measured in tile drainage samples that were also tested for NO₃-N. Table 11 lists TRP concentrations by year for each treatment. Table 12 lists loss by year and treatment in grams per acre. The ascorbic acid method of phosphorus analysis from Standard Methods for the Examination of Water and Wastewater 20th edition was used to determine the concentration of TRP, also known as total orthophosphate. The test measures both dissolved and suspended orthophosphate. This test measures the form most available to plants and is a useful indicator of potential water quality impacts such as algae blooms and weed growth in surface waters. No specific trends were observed over the four year period of observation. Due to the low levels of phosphorus leaving the plots and limits on sample analysis precision, it is not possible to draw meaningful conclusions about this data. Analyses of 2008 water samples for TRP are being completed and will be reported when available.

Treatment	Description		Nitrate-N	(lb/acre)		
		2005	2006	2007	2008	2009
1	Fall 75 Corn (c-s)	38.4ab	15.3ab	51.2c	42.4bc	49.9ab
2	Fall 75 Soybean (s-c)	23.9ab	8.0bc	49.9c	62.4ab	33.5abc
3	Fall 125 Corn (c-s)	35.4ab	11.4abc	63.6bc	44.4bc	44.9abc
4	Fall 125 Soybean (s-c)	23.7ab	12.4abc	39.4cd	52.6bc	41.4abc
5	Spring 75 Corn (c-s)	35.3ab	14.3ab	52.3c	43.5bc	29.5abc
6	Spring 75 Soybean (s-c)	23.6ab	10.3abc	53.1c	53.0bc	20.5bcd
7	Spring 125 Corn (c-s)	21.8ab	11.5abc	58.4bc	36.3bcd	27.4abc
8	Spring 125 Soybean (s-c)	23.7ab	13.0abc	44.1cd	44.2bc	22.3abc
9	Spring 150 Corn (c-s)	41.1a	13.4abc	101.6а	84.3a	52.1a
10	Spring 150 Soybean (s-c)	27.7ab	16.5a	85.9ab	64.2ab	39.9abc
11	Strip 125 Corn (c-s)	27.8ab	14.2ab	55.5c	41.0bc	38.5abc
12	Strip 125 Soybean (s-c)	17.4b	12.0abc	43.9d	48.6bc	24.0abc
13	Cover Crop 125 Corn (c-s)	20.0ab	12.6abc	55.4c	37.2bcd	24.0abc
14	Cover Crop 125 Soybean (s-c)	34.9ab	9.4abc	48.4cd	50.1bc	36.1abc
15	LCD 125 Corn (c-s)	29.7ab	11.5abc	56.1bc	50.2bc	24.9abc
16	LCD 125 Soybean (s-c)	24.5ab	11.4abc	53.1c	47.2bc	18.7cd
17	Kura clover	26.3ab	5.2c	34.6cd	24.9cd	18.7cd
18	Orchardgrass + Red/Ladino clover	26.1ab	5.3c	18.6d	9.0d	7.1d
	LSD	22.9	8.4	30.4	31.0	30.3

Table 10. Average annual flow weighted nitrate losses by treatment in 2005, 2006, 2007, 2008 and 2009 with statistical significance at p=0.05. Statistical comparisons are within years only.

The (c-s) or (s-c) indicates the rotation order starting in 2005.

Treatment	Description		TRP		(µg/L)	
		2005	2006	2007	2008	2009
1	Fall 75 Corn (c-s)	4.64cd	6.00b	14.56b	53.00a	
2	Fall 75 Soybean (s-c)	6.68cd	12.18ab	9.44b	13.20b	
3	Fall 125 Corn (c-s)	25.29a	9.99ab	9.62b	17.70ab	
4	Fall 125 Soybean (s-c)	17.24abc	11.19ab	47.74a	37.38ab	
5	Spring 75 Corn (c-s)	15.03abcd	7.84b	9.60b	21.47ab	
6	Spring 75 Soybean (s-c)	8.58cd	6.47b	8.23b	10.39b	
7	Spring 125 Corn (c-s)	10.56cd	11.73ab	10.18b	22.14ab	
8	Spring 125 Soybean (s-c)	22.63ab	14.04ab	52.16a	51.51a	
9	Spring 150 Corn (c-s)	13.85bcd	9.31ab	6.45b	9.06b	
10	Spring 150 Soybean (s-c)	11.31cd	9.31ab	10.10b	12.02b	
11	Strip 125 Corn (c-s)	9.84cd	9.28ab	13.36b	10.43b	
12	Strip 125 Soybean (s-c)	6.94cd	9.05b	10.19b	9.56b	
13	Cover Crop 125 Corn (c-s)	11.96bcd	10.69ab	23.85ab	21.66ab	
14	Cover Crop 125 Soybean (s-c)	13.80bcd	17.12a	16.56b	15.18b	
15	LCD 125 Corn (c-s)	12.63bcd	6.71b	8.15b	17.84ab	
16	LCD 125 Soybean (s-c)	12.12bcd	9.54ab	8.89b	8.98b	
17	Kura clover	9.69cd	12.09ab	7.87b	10.12b	
18	Orchardgrass + Red/Ladino clover	7.11cd	11.02ab	7.39b	7.75b	
	LSD	11.3	8.1	29.4	35.8	

 Table 11. Average annual flow weighted total reactive phosphorus concentrations by treatment in 2005, 2006, 2007, 2008 and 2009 data with statistical significance at p=0.05. Statistical comparisons are within years only.

The (c-s) or (s-c) indicates the rotation order starting in 2005.

Treatment	Description		TRP	(grams/acre)			
		2005	2006	2007	2008	2009	
1	Fall 75 Corn (c-s)	6.4b	2.3c	29.7bc	75.80a		
2	Fall 75 Soybean (s-c)	4.3b	4.3abc	18.7c	20.51b		
3	Fall 125 Corn (c-s)	19.2ab	4.1abc	18.4c	33.82ab		
4	Fall 125 Soybean (s-c)	14.3ab	3.3abc	72.4a	51.53ab		
5	Spring 75 Corn (c-s)	13.0ab	2.8c	21.4c	43.01ab		
6	Spring 75 Soybean (s-c)	5.0b	2.4c	14.4c	15.59b		
7	Spring 125 Corn (c-s)	6.2b	5.6abc	23.7c	14.45b		
8	Spring 125 Soybean (s-c)	14.8ab	6.4ab	70.9ab	47.97ab		
9	Spring 150 Corn (c-s)	15.4ab	4.2abc	14.7c	18.71b		
10	Spring 150 Soybean (s-c)	8.6ab	4.4abc	20.1c	15.64b		
11	Strip 125 Corn (c-s)	25.7a	3.4abc	33.6abc	15.14b		
12	Strip 125 Soybean (s-c)	3.0b	3.1bc	21.4c	10.02b		
13	Cover Crop 125 Corn (c-s)	20.6ab	4.9abc	41.7abc	23.76ab		
14	Cover Crop 125 Soybean (s-c)	12.5ab	4.1abc	34.0abc	37.67ab		
15	LCD 125 Corn (c-s)	13.2ab	6.7a	16.0c	31.20ab		
16	LCD 125 Soybean (s-c)	8.3ab	3.2bc	22.0c	13.73b		
17	Kura clover	9.6ab	3.1bc	17.8c	22.03ab		
18	Orchardgrass + Red/Ladino clover	5.9b	2.7c	13.9c	11.27b		
	LSD	19.1	3.4	41.5	55.2	_	

Table 12. Average annual flow weighted total reactive phosphorus loss by treatment in 2005, 2006, 2007, 2008 and 2009 data with statistical significance at p=0.05. Statistical comparisons are within years only.

The (c-s) or (s-c) indicates the rotation order starting in 2005.

Late Spring Nitrate Test 2005, 2006, 2007, 2008 and 2009

Each corn plot was sampled using the Late Spring Nitrate Test (LSNT) procedures for determination of nitrate-nitrogen concentrations in the top 12" of soil on June 17, 2005 when corn plants were approximately 10" tall. Table 13 lists soil test results and the additional application amount recommended. Test results were for information only and no additional N applications were made. Fall N application plots had lower test values than plots with N applied in the spring. The spring 150 (treatment 9) plots had the highest N concentrations and the fall 125 (treatment 3) the lowest.

Each corn plot was sampled using the Late Spring Nitrate Test (LSNT) procedures for determination of nitrate-nitrogen concentrations in the top 12" of soil on June 6, 2006 when corn plants were approximately 8" tall. Results are listed in Table 13. As in 2005, test results were for information purposes only. No additional N was applied to the treatment plots. Highest values were observed using the LCD applicator at 125 lbs/acre N rate, closely followed by the conventional knife applicator using 150 lbs N/acre. Lowest values were recorded for the Fall 75 treatment.

Each corn plot was sampled using the Late Spring Nitrate Test (LSNT) procedures for determination of nitrate-nitrogen concentrations in the top 12" of soil on June 4, 2007 when corn plants were approximately 6" tall and prior to fertilizer application. Results are listed in Table

13. As in previous years, test results were for information purposes only. No additional N based on LSNT results was applied to the treatment plots. Highest values, 10 mg/L were observed for 3 of the 8 treatments (LCD, Strip, and Fall at 125 lbs/acre N rate), closely followed by all other treatments at 8 mg/L.

Due to a very wet May, and fertilization on June 4, 2008, a specific LSNT was not completed in 2008; however, soil samples for half of the corn plots were taken in late April, the results of which are listed in Table 13. As in previous years, test results were for information purposes only. No additional N based on LSNT results was applied to the treatment plots.

Each corn plot was sampled using the Late Spring Nitrate Test (LSNT) procedures for determination of nitrate-nitrogen concentrations in the top 12" of soil on June 16, 2009 when corn plants were approximately 8" tall and prior to fertilizer application. Results are listed in Table 13. As in previous years, test results were for information purposes only. No additional N based on LSNT results was applied to the treatment plots. The highest value of 72 mg/kg was from the fall applied 125 lb/ac corn plots. The highest recommended nitrogen addition was 46 lb/ac on the treatment where 125 lb/ac application rate of nitrogen was used in the spring .

Table 13. Late Spring Nitrate Test (LSNT) nitrate-N concentrations and additional N recommended but not
applied in 2005, 2006, 2007, 2008 and 2009.

			Soil	Recom.								
			Nitrate-N	N Add.								
	Treatment	s Description	mg/kg	lb/acre								
			2005		2006		2007		2008*		2009	
ears, rs. 05)	1,2	Fall 75 Corn	8	136	12	106	8	136	NA	NA	34	0
5 C 8 C	3,4	Fall 125 Corn	6	150	17	62	10	122	21	30	72	0
ttments ODD EN ye satmen ed in 2	5,6	Spring 75 Corn	10	122	19	52	8	136	NA	NA	22	26
	7,8	Spring 125 Corn	9	132	26	0	8	136	5	159	19	46
	9,10	Spring 150 Corn	18	54	48	0	8	136	6	154	19	45
Odd tr spond en to E ample: s meas	11,12	Strip 125 Corn	10	122	16	72	10	122	NA	NA	22	28
Odd orrespond even to Example was mea	13,14	Cover Crop 125 Corn	10	122	40	0	8	122	6.2	150	23	17
corre ev Exa was	15,16	LCD 125 Corn	16	72	53	0	10	122	NA	NA	22	24

*April samples used due to high field moisture in May of 2008.

NA – Data not available

Stalk Nitrate Test 2005, 2006, 2007, 2008 and 2009

Corn stalk nitrate test sampling protocols were followed to determine nitrate-N concentrations in corn stalk tissue from each plot (Table 14). Stalks were sampled on September 29, 2005. Stalk nitrate values can be divided into four categories: low (less than 250 mg/L-N) marginal (250-700) optimal (700 and 2000 mg/Kg). Only the spring 150 treatment was in the optimal range, all other treatments were in the marginal to low range.

As in 2005, corn stalk nitrate test sampling protocols were followed in the fall of 2006 to determine nitrate-N concentrations in corn stalk tissue from each plot (Table 14). Stalks were sampled on October 2, 2006. All treatments were in the marginal to low range indicating that additional N should have been supplied to the crop.

As in previous years, corn stalk nitrate test sampling protocols were followed in the fall of 2007 to determine nitrate-N concentrations in corn stalk tissue from each plot (Table 14). Stalks were sampled on October 4-5, 2007. One-half of the treatments were in the marginal to low range

indicating that additional N should have been supplied to the crop. The other half were in the optimal range: fall 125, spring 125, spring 150, and cover crop 125 treatments.

As in previous years, corn stalk nitrate test sampling protocols were followed in the fall of 2008 to determine nitrate-N concentrations in corn stalk tissue from each plot (Table 14). Stalks were sampled on October 9, 2008. All treatments except for the spring 150 and cover crop 125 treatments were in the low range indicating that additional N would likely have made crop yields increase.

As in previous years, corn stalk nitrate test sampling protocols were followed in the fall of 2009 to determine nitrate-N concentrations in corn stalk tissue from each plot (Table 14). Stalks were sampled on October 19, 2009. All treatments were in the marginal to low range indicating that additional N should have been supplied to the crop.

 Table 14. Stalk nitrate test concentrations in 2005, 2006, 2007, 2008 and 2009. Optimal range is between 700 and 2000 mg/L-N.

Treatments	Description		nitrate-N	* (mg/Kg))	
		2005	2006	2007	2008	2009
1,2	Fall 75 Corn	32	238	404	142	149
3,4	Fall 125 Corn	67	484	718	56	475
5,6	Spring 75 Corn	83	171	174	38	151
7,8	Spring 125 Corn	186	310	867	217	532
9,10	Spring 150 Corn	1032	498	1450	641	538
11,12	Strip 125 Corn	260	228	161	182	362
13,14	Cover Crop 125 Corn	178	167	870	354	555
15,16	LCD 125 Corn	178	95	520	153	42
	1,2 3,4 5,6 7,8 9,10 11,12 13,14	1,2 Fall 75 Corn 3,4 Fall 125 Corn 5,6 Spring 75 Corn 7,8 Spring 125 Corn 9,10 Spring 150 Corn 11,12 Strip 125 Corn 13,14 Cover Crop 125 Corn	2005 1,2 Fall 75 Corn 32 3,4 Fall 125 Corn 67 5,6 Spring 75 Corn 83 7,8 Spring 125 Corn 186 9,10 Spring 150 Corn 1032 11,12 Strip 125 Corn 260 13,14 Cover Crop 125 Corn 178	2005 2006 1,2 Fall 75 Corn 32 238 3,4 Fall 125 Corn 67 484 5,6 Spring 75 Corn 83 171 7,8 Spring 125 Corn 186 310 9,10 Spring 150 Corn 1032 498 11,12 Strip 125 Corn 260 228 13,14 Cover Crop 125 Corn 178 167	2005200620071,2Fall 75 Corn322384043,4Fall 125 Corn674847185,6Spring 75 Corn831711747,8Spring 125 Corn1863108679,10Spring 150 Corn1032498145011,12Strip 125 Corn26022816113,14Cover Crop 125 Corn178167870	2005 2006 2007 2008 1,2 Fall 75 Corn 32 238 404 142 3,4 Fall 125 Corn 67 484 718 56 5,6 Spring 75 Corn 83 171 174 38 7,8 Spring 125 Corn 186 310 867 217 9,10 Spring 150 Corn 1032 498 1450 641 11,12 Strip 125 Corn 260 228 161 182 13,14 Cover Crop 125 Corn 178 167 870 354

* low (less than 250 mg/Kg) marginal (250-700) optimal (700-2000).

Grain Yield 2005, 2006, 2007, 2008 and 2009

Corn and soybean yields, by treatment, are listed in Table 15 and Table 16. Because of the plot configuration in 2004, when corn and soybean were both grown on the same plot, yields for 2005 could be separated into those that followed the same crop or were grown in rotation. Continuous corn yield depression ranged from 12-31%, with an average 18%. Soybean on soybean yield depression was 6-11%, with an average of 9%. Considering only the crops in rotation, yields ranged from 156-179 bu/acre; lowest yield was for Fall 75 treatment and highest for Spring 150. The comparison resulted in a significant difference at p=0.05. All other treatments were not statistically different from these two values. Soybean yield in rotation ranged from 48-53 bu/acre and no significant differences were noted. Pocahontas County corn and soybean yield for 2005 were 183 and 50 bu/acre, respectively.

For 2006, corn yields ranged from 68-157 bu/acre; if the strip crop treatment 11(strip crop with weed pressure) was not included (68 bu/acre), lowest yield was for Fall 75 treatment (138 bu/acre) and highest for Spring 150, as was the case in 2005. In addition, when treatment 11 was removed from the statistical analysis then treatments 1 and 13 both became statistically different from the others. Even in the dry season experienced, the rye cover crop in corn only diminished yields by 4 bu/ac compared to the spring 125 treatment without rye cover. Rye in soybean only

lowered yield by 1 bu/ac compared to the spring 125 treatment. Soybean yield ranged from 40-55 bu/acre. The strip crop soybean treatment had the lowest yield due to weed pressure encountered. Highest yield was for the spring 75 treatment. Overall yields at the site were very acceptable considering precipitation in the drainage season (Mar-Nov) was 8.6 inches below normal. Pocahontas County corn and soybean yield were 167 and 52 bu/acre, for 2006.

Below normal precipitation in June and July quite likely diminished corn and soybean yields in 2007. Highest corn yield was for the Fall 125 N treatment. It was closely followed by Fall 75 and Spring 150 treatments. In 2006, Fall 75 had one of the lowest yields and was equal to the yield recorded in 2007, one of the highest. The rye cover crop system showed a decrease in corn yield of 7 bu/acre compared to no cover crop. This could again be the result of below normal precipitation in June and July (~5" below normal from Mar-Jul). Soybean yield ranged from 25-37 bu/acre. Rye in soybean lowered yield by 8 bu/ac compared to the spring 125 treatment. The strip crop soybean treatment had the lowest yield due to weed pressure encountered. Highest yield was for the spring 125 N treatment. Overall yields at the site were below the county average quite likely due to below precipitation in June and July. Pocahontas County corn and soybean yield were 165 and 51 bu/acre, for 2007.

The highest observed corn yield in 2008 was for the Spring 150 lb/acre N treatment (Table 15), which also corresponds to the highest LSNT values. The Spring 150 lb/acre N treatment was closely followed by LCD 125 lb/acre N and Fall 125 treatments. The rye cover crop system showed an increase, although not significant, in corn yield of 8 bu/acre compared to no cover crop. Soybean yield ranged from 36-45 bu/acre. Rye in soybean lowered yield by 4 bu/ac compared to the Spring 125 treatment.

During 2007 the corn and soybean yields were much lower than previous years due to a hail storm on July 22. There was no statistical difference of corn yield among treatments in 2009. The corn yield of individual plot ranged from 123-136 bu/acre (Table 15). The highest corn yield was for the Fall 75 N treatment while the lowest corn yield was for the Strip 125 N treatment. The soybean yield of individual plot ranged from 15-34 bu/acre (Table 16) with the highest yield for the Fall 125 N treatment and lowest yield for the Spring 125 N treatment. Again, because of the hail storm, the soybean yield may not truly reflect the treatment effect and the statistical analysis was for information only.

				Yield		(bu/acre)		
_	Treatments	Description	2005	2005	2006	2007	2008	2009**
			continuous	rotation	rotation	rotation	rotation	rotation
	1,2	Fall 75 Com	108d	156b	138a	138ab	163a	136a
	3,4	Fall 125 Corn	137abc	164ab	147a	143a	172a	135a
E C H F E	5,6	Spring 75 Corn	134bc	162ab	148a	121bcd	164a	128a
	7,8	Spring 125 Corn	153ab	173ab	143a	116cd	151a	126a
Odd treatm correspond to rears, even to ars. Example: one was mean one was mean	9,10	Spring 150 Corn	156a	179a	157a	136abc	180a	135a
Odd Tres Ex.	11,12	Strip 125 Corn	152ab	174ab	68Ъ	106d	166a	123a
Od corres years, cars. E one w	13,14	Cover Crop 125 Corn	134bc	163ab	139a	109d	159a	127a
ye	15,16	LCD 125 Corn	125cd	163ab	154a	117cd	172a	129a
	Pocahontas County average			183	167	165	178	NA

Table 15. Corn yield by treatment in 2005, 2006, 2007, 2008, and 2009 with statistical significance at p=0.05*.

*significance within a system, i.e. within the rotation and within year. Note: Severe weed pressure (lambsquarter) encountered in 2006 and (dandelion) in 2007 for strip crop treatment.

**A severe hail storm occurred on July 22, 2009

NA – Data not available at time of report preparation.

Table 16. Soybean yield by treatment in 2005, 2	2006, 2007, 2008 and 20	09 with statistical significance at
p=0.05*.		-

				Yield		(bu/acre))	
	Treatments	Description	2005	2005	2006	2007	2008	2009**
			continuous	rotation	rotation	rotation	rotation	rotation
EN years t one 006)	1,2	Fall 75 Soybean	47a	50a	43bc	36abc	36a	25ab
	3,4	Fall 125 Soybean	44a	48a	50ab	37ab	45a	21ab
n n DI	5,6	Spring 75 Soybean	46a	51a	55a	32bc	45a	21ab
)dd treatmer espond to E even to OD nple: treatm measured in	7,8	Spring 125 Soybean	44a	49a	48ab	44a	45a	28a
Odd trea correspond irs, even to 'xample: tre 'as measure	9,10	Spring 150 Soybean	47a	53a	51a	42ab	44a	23ab
	11,12	Strip 125 Soybean	45a	50a	40c	25c	41a	20ab
corr corr Exar was	13,14	Cover Crop 125	49a	53a	47abc	36abc	41a	28a
v Le	15,16	LCD 125 Soybean	46a	49a	51a	36abc	42a	19b
	Pocahontas County average			50	52	51	51	NA

*significance within a system, i.e. within the rotation.

**A severe hail storm occurred on July 22, 2009

NA – Data not available at time of report preparation.

Rye Biomass Yield 2005, 2006, 2007, 2008 and 2009

Rye for 2005 was planted on October 15, 2004. The rye in corn plots was burned down with Round Up herbicide on April 14, 2005 and in soybean plots on May 24, 2005 to allow for these crops to flourish. Rye biomass in the soybean plots was allowed to grow 40 additional days resulting in 23.4 times as much dry matter being produced as compared to the rye in corn. Rye in corn produced 105 lbs of dry matter/acre and contained 5.5 lbs N/acre. Rye in soybean plots yielded 2464 lbs of dry matter/acre that contained 46 lbs of N/acre.

Rye for 2006 was planted on October 11, 2005 (Figure 1). That in corn plots was burned down with Round Up herbicide on April 26, 2006 and in soybean plots on May 17, 2006 to allow for these crops to flourish. Rye biomass in the soybean plots was allowed to grow 22 additional days resulting in 3.3 times as much dry matter being produced as compared to the rye in corn. Rye in corn produced 812 lbs of dry matter/acre that contained 27 lbs N/acre. Yield in soybean plots was 2672 lbs of dry matter/acre and contained 53 lbs N/acre.

Rye biomass was much lower (~63% less in corn and ~57% less in soy) (Figure 1) in 2007 compared to 2006. The decrease was quite likely due to a major growth setback as a result of very cold temperatures on April 12. Rye for 2007 was planted on October 12, 2006. That in corn plots was burned down with Round Up herbicide on May 3, 2007 and in soybean plots on May 25, 2007 to allow for these crops to flourish. Rye biomass in the soybean plots was allowed to grow 22 additional days resulting in 5 times as much dry matter being produced as compared to the rye in corn. Rye in corn produced 295 lbs of dry matter/acre that contained 10 lbs N/acre. Yield in soybean plots was 1504 lbs of dry matter/acre and contained 28 lbs N/acre.

Rye biomass in 2008 was very low (~45% less in corn and ~51% less in soy) (Figure 1) when compared to 2007. Rye for 2008 was planted on October 25, 2007. Rye in the corn plots was burned down with Round Up herbicide on May 6, 2008 and in soybean plots on May 23, 2008 to allow for these crops to flourish. Rye biomass in the soybean plots was allowed to grow 22 additional days resulting in 5 times as much dry matter being produced as compared to the rye in corn. Rye in corn produced 149 lbs of dry matter/acre. Yield in soybean plots was 676 lbs of dry matter/acre.

Rye biomass in 2009 was between observed values for 2007 and 2008 (Figure 1). Rye for 2009 was planted on October 27, 2008. Rye in the corn plots was burned down with Round Up herbicide on May 8, 2009 and in soybean plots on May 31, 2009 to allow for these crops to flourish. Rye biomass in the soybean plots was allowed to grow 23 additional days resulting in nearly 5 times as much dry matter being produced as compared to the rye in corn. Rye in corn produced 209 lbs of dry matter/acre. Rye biomass in soybean plots was 1028 lbs of dry matter/acre.

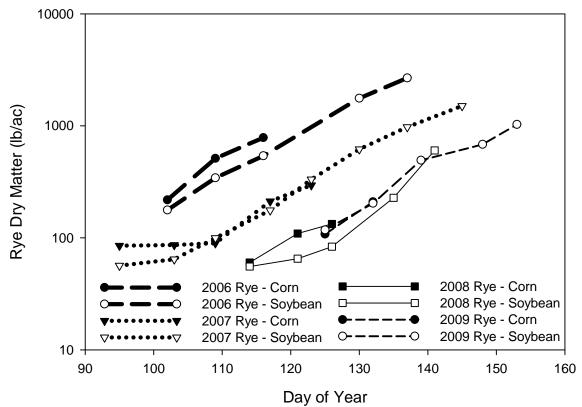


Figure 1. Rye dry matter produced as a cover crop for corn and soybeans.

Summary

Crop year 2005 could be considered a 'calibration' year for the new treatments imposed at the research site. So, it is difficult to draw broad conclusions from crop year 2005. However, of note is that in the 1st year of conversion from a row-crop system to a perennial system we have seen little if any reduction in nitrate-N concentration. Another important observation is that during April 2005 approximately 81% of the precipitation was intercepted by and exited via the subsurface drainage system.

The 2006 crop season was marked by typical early-season drainage patterns starting late-March as soils thawed. Drainage and precipitation were slightly above average in late March and April; each month had nearly one-half inch of precipitation greater than normal. Approximately eighty-three percent of April precipitation was intercepted by the drainage system. Excess precipitation basically ceased in early May as did all drainage. The remainder of the season had enough timely precipitation to produce adequate crop yield, but no subsurface drainage. March through November total was 8.59" below normal. Crop yield was very good considering the below normal precipitation experienced at the site. Nitrate-N concentrations the first year after perennial system establishment in 2005 dropped considerably; concentrations in the orchardgrass/clover system decreased by 33% from 14.7 to 9.7 mg/L, those in the kura system dropped from 13.1 to 6.9 mg/L. Of note for the rye cover crop system was that neither corn nor soybean grain yields were not adversely affected, even in a dry year, by the rye cover crop.

Nitrate concentrations in subsurface drainage were not greatly reduced through the use of a cover crop.

January, February, April and May precipitation in 2007 was above normal. March was slightly below normal. As in 2006, June and July of 2007 were both well below normal, with August 8.62" above normal and September and October only slightly above normal. March through November total was 3.52" above normal. Average soil temperature at a 4"depth rose above freezing on March 13 and remained steady and began to rise after the 17th of March. All drainage ceased after the 1st week of June and commenced the third week of August after 10.5 inches was recorded in the preceding week. At least weekly samples were also available from the 3rd week of September until the end of October, a rather atypical drainage period. Average drainage for all treatments was 19.94 inches (5.5x the drainage of 2006 and 2.4x that of 2005). With 33.28" of precipitation between March 1 and November 30 and using an overall drainage volume of 20.38", approximately 61% of the precipitation became subsurface drainage

As opposed to 2006, highest concentrations in 2007 were recorded for the 150 rate treatment within the corn year (concentrations were highest in the soybean year in 2006 for the 150 rate) and as in 2006, lowest concentrations were recorded for the perennial systems, specifically the orchardgrass/clover treatment. No significant differences were noted when comparing the fall and spring applications to each other across rates or crops.

Losses in 2007 were the highest recorded since the initiation of this treatment phase in 2005. The increase in loss was due to large drainage volumes in 2007 compared to previous years. Average drainage volume was 2.3 times that recorded in 2005 (5.5 times that in 2006).

Below normal precipitation in June and July quite likely diminished corn and soybean yields in 2007. Highest corn yield was for the Fall 125 N treatment. The rye cover crop system showed a decrease in corn yield of 7 bu/acre compared to no cover crop. This could again be the result of below normal precipitation in June and July (~5" below normal from Mar-Jul). Soybean yield ranged from 25-37 bu/acre. Rye in soybean lowered yield by 8 bu/ac compared to the spring 125 treatment. Rye biomass was much lower (~63% less in corn and ~57% less in soy) in 2007 compared to 2006. The decrease was quite likely due to a major growth setback as a result of very cold temperatures on April 12.

Overall, 2008 received about one inch more rain than a "normal" year, however the rainfall pattern was different with May and June being the two highest rainfall months. There were issues all over the state getting crops in the ground in 2008 due to this early rain. July, August and September were all below normal, but still fairly substantial with 4.12, 3.16 and 2.55 inches of rainfall, respectively. Drainage lagged behind rainfall enough for a large storm at the end of May to begin draining in early June causing drainage values to spike up over 9 inches for the month. After the rain lag from July to September, October picked up again with just under 4 inches. This coupled with relatively low temperatures delayed harvest as the fields would not dry out. Overall, drainage values were proportional to rainfall with 59% of the rain falling on the site leaving through subsurface drainage.

Just like in 2007, highest concentrations in 2008 were recorded for the 150 rate treatment (treatment 9); however, 2008 was a soybean year as opposed to corn in 2007 and lowest were found in the perennial systems, specifically the orchardgrass/clover treatment (treatment 18). No significant differences were noted when comparing the fall and spring applications to each other across rates or crops. Use of the LCD applicator compared to a conventional knife also showed no significant differences in resulting concentrations. Treatment 14 (rye cover crop treatment with corn) was only significantly lower than the comparable fall applied 125 lb/acre treatment but other comparable treatments (treatments 8, 12, 16) were not significantly different. Treatment 13, cover crop in soybeans for 2008 was not significantly different than any comparable treatments (treatments 3, 7, 11, 15). The strip tillage system in either crop did not exhibit any significantly different effects on NO₃-N concentrations. Significance was noted when comparing the N rate treatments. Treatment 9, which was planted with soybeans in 2008 and received 150 lb/acre N in 2007, had the highest nitrate concentrations of all treatments.

Corn yield values in 2008 were the highest recorded since 2005, the initial "calibration" year. The highest observed corn yield was for the Spring 150 lb/acre N treatment, which also corresponds to the highest LSNT results. It was closely followed by LCD 125 lb/acre N and Fall 125 treatments. The rye cover crop system showed an increase, although not significant, in corn yield of 7 bu/acre compared to no cover crop. Soybean yield ranged from 39-49 bu/acre. Rye in soybean lowered yield by 4 bu/ac compared to the Spring 125 treatment.

In 2009, January precipitation was above normal; however, February through June and August and September precipitation was below normal. July and October precipitation was above normal. The lower precipitation amounts for the majority of the year were partially countered by higher rainfall in October.

Average soil temperature at a 4"depth rose above freezing in 2009 on March 18 and steadily began to rise. Overall, no statistical differences among treatments were noted for drainage in 2009, except LCD treatments had lower drainages than Fall corn treatments. Average drainage for all treatments was 11.76". Approximately 46% of the precipitation became subsurface drainage between April 1 and November 30.

Similar to previous years, highest concentrations in 2009 were recorded for the 150 rate treatment within both the corn year and soybean year, and lowest were found in the perennial systems, specifically the orchardgrass/clover treatment; all other values were between these treatments values. No significant differences were noted when comparing the fall and spring applications to each other across rates or crops. Use of the LCD applicator compared to a conventional knife also showed no significant differences in resulting concentrations. The use of a cover crop or strip tillage system in either crop also did not exhibit any significantly different effects on NO₃-N concentrations. Significance was noted when comparing the N rate treatments. Nitrate concentration in drainage from the previous season(s) applications at the 150 rate was significantly higher than the 75 and 125 rates.

Nitrate losses in 2009 were lower than in 2007 and 2008 due to lower drainage volumes in 2009 compared to previous two years. Losses ranged from 7.1 to 52.1 lbs N/acre for the orchardgrass/clover treatment and 150 Spring applied nitrogen treatment in the corn year of the

rotation, respectively. Statistical differences were noted when comparing the Spring 150 soybean treatment and the fall 75 corn to both the LCD 125 soybean and the perennial systems.

The corn and soybean yields were much lower than previous years due to the hail storm on July 22. The corn yield of individual plots in 2009 ranged from 123-136 bu/acre and was not statistically different among treatments. The highest corn yield was for the Fall 75 N treatment while the lowest was for the Strip 125 N treatment. The soybean yield of individual plot ranged from 15-34 bu/acre with the highest yield for the Fall 125 N treatment and the lowest for the Spring 125 N treatment.

Pekin Project Site

Drainage management practices are being evaluated at the Pekin school drainage facility. There are a total of nine plots at this facility. Three different management practices are being utilized and evaluated. The treatments include the following:

- ... 3 plots with conventional drainage (drain tile at 3.5-4 ft deep).
- ... 3 plots with controlled conventional drainage with free flow in the spring (April –May) and fall (September-October). The outlet control was set at 2 ft below the ground surface except during free flow.
- ... 3 plots with pseudo-shallow drainage (control structure set at 2 ft below surface). This treatment would be used to represent a system similar to shallow drainage.

These three treatments are being evaluated to investigate the impacts of drainage management practices on drainage volume, nutrient concentrations in the subsurface drainage, and grain yield. Again, these factors will be evaluated over the five year term of this project. Since significant climate variability exists and the response of variable weather conditions on drainage management systems is needed it is important to evaluate the treatment response over the entire duration of the project phase. In addition to drainage management practices, drainage from two plots flows through a passive biofilter. One of the plots is a conventional drainage plot and one is a shallow drainage plot. The concentration of nutrients entering and exiting the biofilters is being monitored to document any reductions as a result of the passive biofilter.

Precipitation and Drainage

Crop years 2005 and 2006 were both unusually dry years at the Pekin site (Figure 2 and Figure 4). Precipitation recorded in 2007 was 10" above normal (Figure 6). On average, 842mm (33.15") of precipitation is recorded for the region (1971 to 2000). In 2005, 633 mm (24.93") were recorded at the site. Precipitation from mid-March through the end of 2005 was less than 18 inches (Figure 2) with only about 8 inches from mid-March through the end of June. In 2006, slightly less total precipitation was recorded. Only 580 mm (22.83") of precipitation was recorded for the year; less than 2/3 of normal amount (Figure 4). In 2007, 1100 mm (43.32") of precipitation was recorded (Figure 6). Precipitation in 2008 tracked along with the historic average quite well with the final amount of rain approximately 1" below normal. In most of 2009, recorded precipitation was above normal with a total of 36" from January through mid-November (Figure 10). Drainage volumes were very similar for both 2005 and 2006. There was on average slightly less than 4 inches of drain flow from the conventional drainage plots and less than 2 inches of flow from the pseudo-shallow drainage plots (Figure 3 and Figure 5). It is likely

that there is some lateral seepage from the pseudo-shallow drainage and controlled drainage plots to the conventional drainage plots (See Figure 2 through Figure 5 below). The plan is to investigate this through additional water table monitoring during periods of high water tables and low evapotranspiration. In 2007 with the above normal precipitation, 42% of precipitation became conventional subsurface drainage. The controlled drainage system drainage volume was reduced by more than one half to 19% of all precipitation. The shallow drainage system yielded only 12% of the annual precipitation. Respectively, drainage volumes were 18.7, 8.6 and 5.2 inches for each of the three systems (Figure 7). In 2008 with the approximately average precipitation, 48% of precipitation became conventional subsurface drainage. The controlled drainage system drainage volume was reduced to 18% of precipitation. The shallow drainage system yielded substantially less with 10% of precipitation. Respectively, drainage volumes were 16.6, 6.2, and 3.3 inches for each of the three systems (Figure 9). In 2009 with the above normal precipitation, 67% of precipitation became conventional subsurface drainage. The controlled drainage system drainage volume was reduced to 34% of precipitation. The shallow drainage system yielded only 19% of precipitation. Respectively, drainage volumes were 24.2, 12.1, and 6.7 inches for each of the three systems in 2009 (Figure 11). Dates for drainage control are listed in Table 17, dates reflect when the controlled drainage fields were lowered to 48" below the ground surface. During all other dates the control structures were set to keep water level at 24" below ground surface.

	Structure opened and fields drained for:				
	Field work (48")	Harvest (48")			
2005	4-14 to 6-14	9-8 to 11-17			
2006	3-31 to 6-1	9-28 to 11-7			
2007	4-3 to 5-31	9-27 to 11-6			
2008	4-14 to 5-29	9-12 to 11-12			
2009	4-20 to 6-6	9-15 to 12-15			

Table 17. Dates that the controlled drainage fields were drained down to 48" below the ground surface.

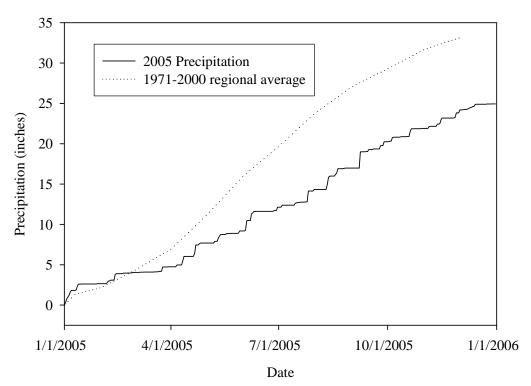


Figure 2. Precipitation in 2005 compared to the 30-year regional average.

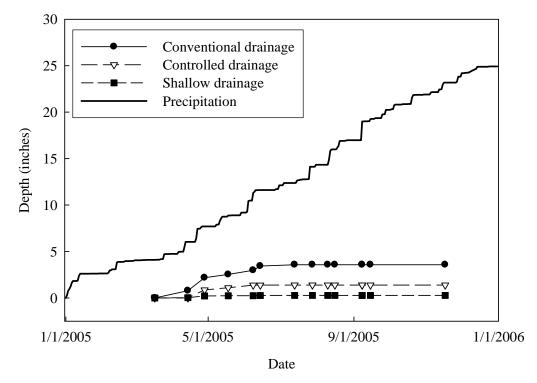


Figure 3. Precipitation and subsurface drainage at the Pekin site in 2005 during monitoring period.

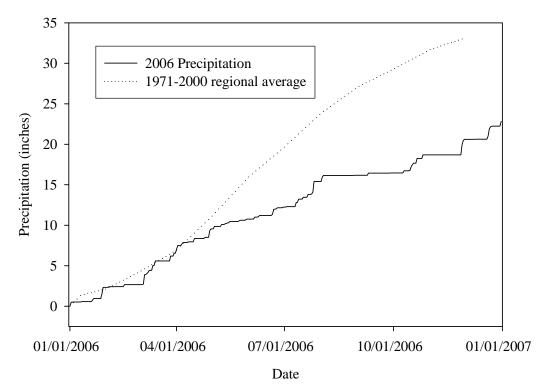


Figure 4. Precipitation in 2006 compared to the 30-year regional average.

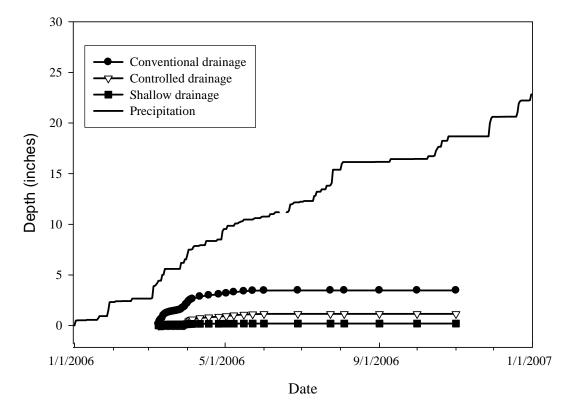


Figure 5. Precipitation and subsurface drainage at the Pekin site in 2006 during the monitoring period.

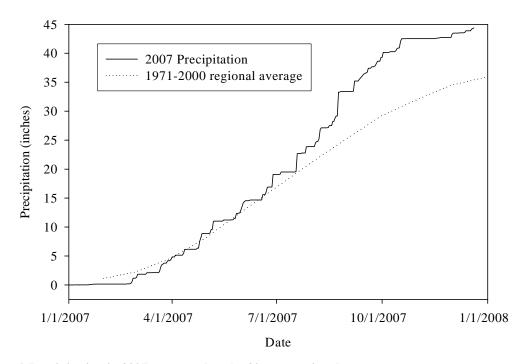


Figure 6. Precipitation in 2007 compared to the 30-year regional average.

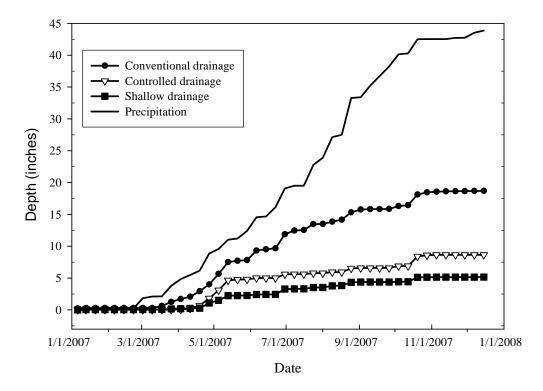


Figure 7. Precipitation and subsurface drainage at the Pekin site in 2007 during the monitoring period.

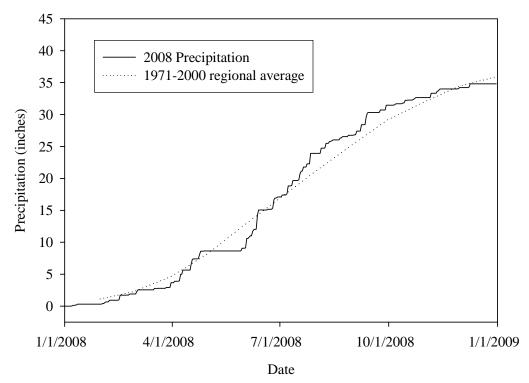


Figure 8. Precipitation in 2008 compared to the 30-year regional average.

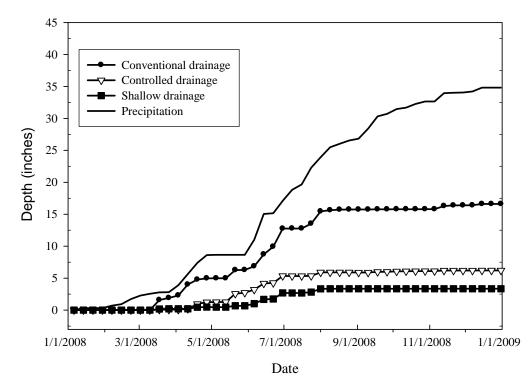


Figure 9. Precipitation and subsurface drainage at the Pekin site in 2008 during the monitoring period.

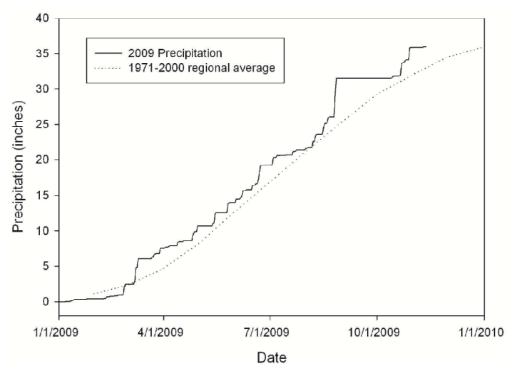


Figure 10. Precipitation in 2009 compared to the 30-year regional average.

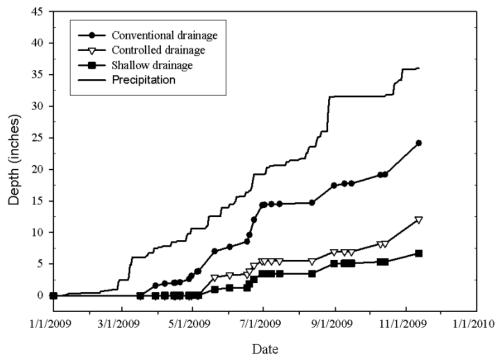
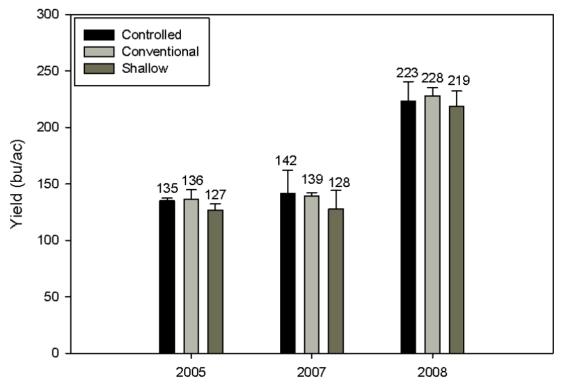



Figure 11. Precipitation and subsurface drainage at the Pekin site in 2009 during the monitoring period.

Corn and Soybean Yields

Historically, corn yields have been relatively low, when compared to state and county averages. The 2006 growing season was plagued with planting and fertilizing issues that resulted in meaningless yield data, and is not included here. Low yields in 2005 and 2007 are not, however, due to drainage management schemes as yields are very similar between treatments (Figure 12). The 2008 growing year produced a very nice crop with yield increases over 2007 between 80 and 90 bushel/acre. There was no corn yield data for individual plots in 2009 but the average corn yield was estimated to be 148 bu/acre.

Soybean yields (Figure 13) have been steady with a slight increase in 2007. In 2005, a dry year, lower yields are observed on the free drainage and the shallow drainage treatments. The 2006 soybean growing season was also plagued by planting and fertilization issues, and the data is not included here. There is a slight decrease in yields in the conventional drainage treatment during 2005-2008 when compared to the controlled drainage and shallow drainage treatments; however, a higher soybean yield in the conventional drainage treatment was observed in 2009.

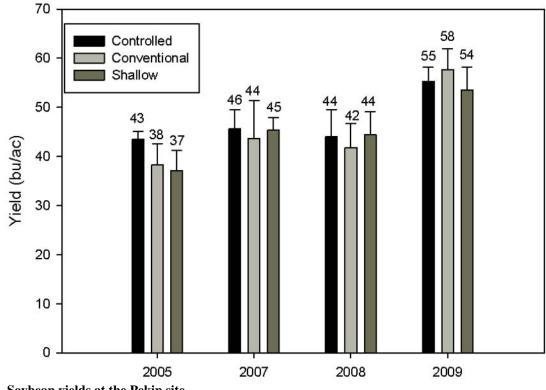


Figure 13. Soybean yields at the Pekin site.

Nitrate-Nitrogen Concentrations

Water samples to determine nitrate-nitrogen (NO₃-N) concentration were only available in April and May, in 2005-06, due to low flow conditions encountered. In 2007, water samples were available in late March, April, May, June, July, August and early September before drainage ceased. Sampling in 2008 was similar to 2007. Water samples were only available from early April to mid-June in 2009. Listed in Table 18 are flow-weighted NO₃-N concentrations for all treatments determined by summing individual loadings through the season and dividing it by the total drainage, thereby weighting the final value to reflect a specific drainage periods influence on the overall value. Values between treatments during individual years were very similar. When comparing years, values were much higher in 2007. The use of a wood-based boireactor constructed at the time of subsurface drain installation and consisting of wood chips surrounding the drain line decreased the concentrations being released from the standard installation, conventional drainage treatment (Figures 14-18). Results from the bioreactor collecting drainage from the shallow management scheme are presented in Figures 19-21. Due to minimal drainage volumes, and few corresponding samples, in 2006, data for the shallow drainage bio-filter is not included. Removals are noticed in the majority of samples taken after each bioreactor.

16. Flow-weighted intrate concentration for an treatments (ing/L).									
Conventional		Controlled		Shallow					
Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.				
6.71	1.16	6.40	2.14	4.57	2.49				
6.92	0.59	7.20	1.44	6.72	1.86				
10.69	1.98	12.08	2.75	12.88	1.63				
6.23	2.97	5.17	3.32	5.95	2.05				
6.39	2.83	7.35	2.23	7.88	1.47				
	Conventiona Average 6.71 6.92 10.69 6.23	Std. Dev. Average Std. Dev. 6.71 1.16 6.92 0.59 10.69 1.98 6.23 2.97	Conventional Controlle Average Std. Dev. Average 6.71 1.16 6.40 6.92 0.59 7.20 10.69 1.98 12.08 6.23 2.97 5.17	Conventional Controlled Average Std. Dev. Average Std. Dev. 6.71 1.16 6.40 2.14 6.92 0.59 7.20 1.44 10.69 1.98 12.08 2.75 6.23 2.97 5.17 3.32	Conventional Controlled Shallow Average Std. Dev. Average Std. Dev. Average 6.71 1.16 6.40 2.14 4.57 6.92 0.59 7.20 1.44 6.72 10.69 1.98 12.08 2.75 12.88 6.23 2.97 5.17 3.32 5.95				

Table 18. Flow-weighted nitrate concentration for all treatments (mg/L).

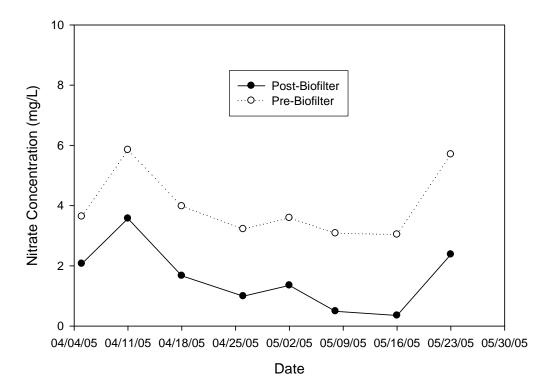


Figure 14. 2005 Conventional drainage bio-filter nitrate data.

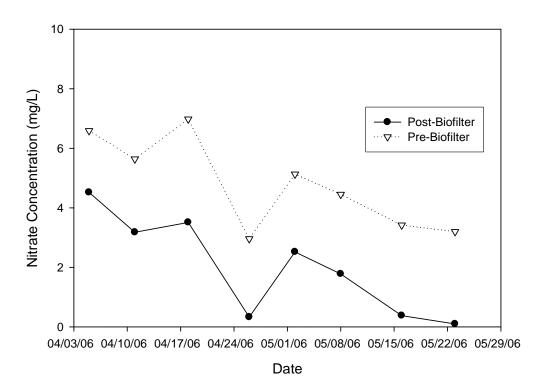


Figure 15. 2006 Conventional drainage bio-filter nitrate data.

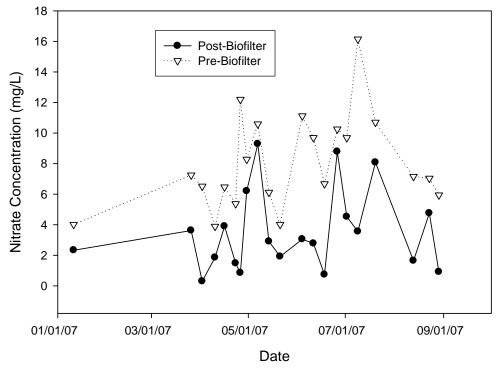


Figure 16. 2007 Conventional drainage bio-filter nitrate data.

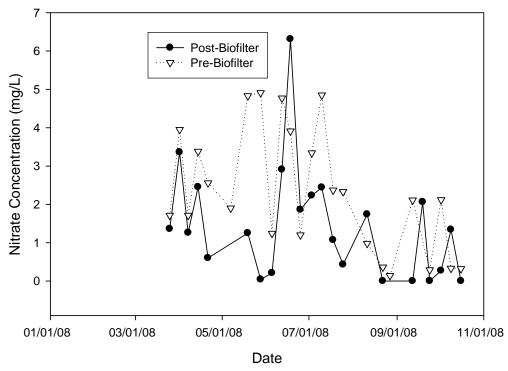


Figure17. 2008 Conventional drainage bio-filter nitrate data.

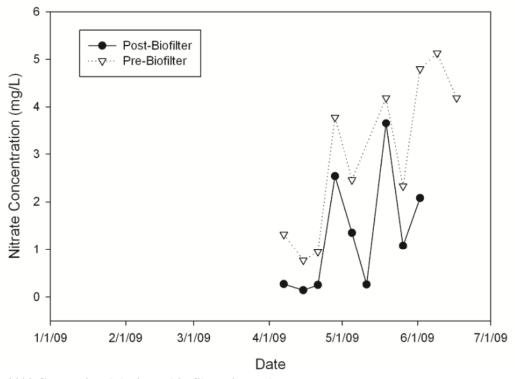


Figure 18. 2009 Conventional drainage bio-filter nitrate data.

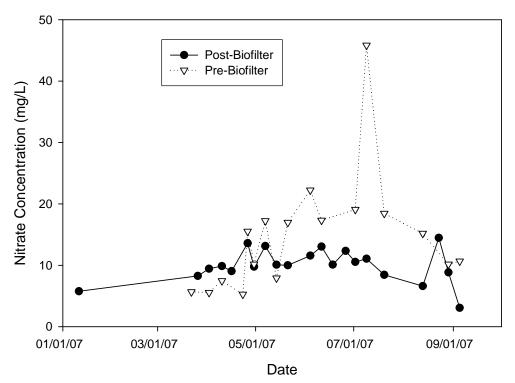


Figure 19. 2007 Shallow drainage bio-filter nitrate data.

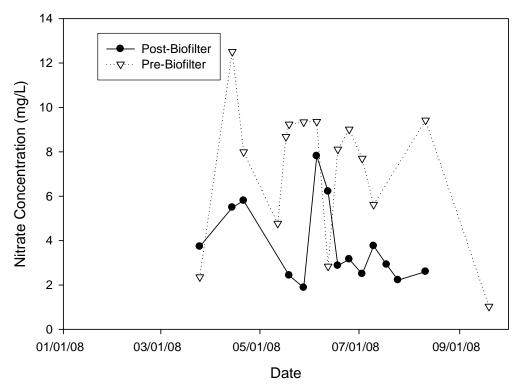


Figure 20. 2008 Shallow drainage bio-filter nitrate data.

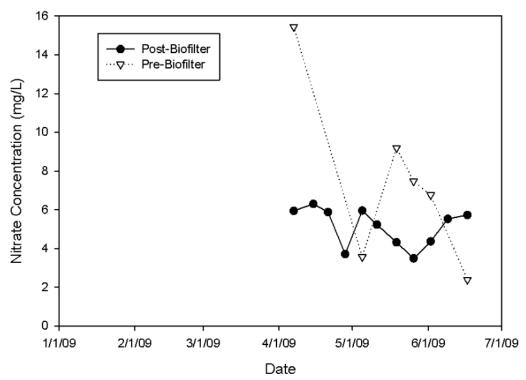


Figure 21. 2009 Shallow drainage bio-filter nitrate data.

Additional Water Quality Testing

While tiles were flowing in 2006, three sets of grab samples were collected over a four- week period from the conventional drainage biofilter plot and analyzed for the presence of additional contaminants that might be present. The results are presented in Table 19. Two useful measures of water quality are biological oxygen demand (BOD) and chemical oxygen demand (COD). They help measure the oxygen-depletion effect of a waste contaminant. The BOD test measures the oxygen demand of biodegradable pollutants whereas the COD test measures the oxygen demand of biodegradable pollutants plus the oxygen demand of non-biodegradable, oxidizable pollutants. COD is expressed as the mass of oxygen consumed per liter of solution. Biological oxygen demand (BOD) or biochemical oxygen is the amount of oxygen required by aerobic microorganisms to decompose the organic matter in a sample of water and used as a measure of the degree of water pollution. Ammonia, sulfate and chloride testing are also good indicators of water quality and were tested for in some of the samples. Ammonia is usually not found in large quantities in tile drainage because in the presence of oxygen rich water it will convert to nitrate. High levels of sulfate or chloride may be indicative of sewage contamination. None of the analytes were found to exceed water quality effluent or MCL standards. Additional testing in the future to detect any trends that may exist is needed.

			Sulfate	Ammonia	Chloride	
Sampling Date	BOD	COD	as SO ₄	as N	as Cl	
Location	mg/L as O ₂		mg/L			
4/18/2006						
pre-biofilter	< 0.1	24.7	not tested			
post-biofilter	< 0.1	45.7				
5/3/2006						
pre-biofilter	0.9	27.5	16.14	0.04	not	
post-biofilter	1.6	46.2	18.08	0.11	tested	
5/16/2006						
pre-biofilter	0.3	52.5	not	0.01	41.18	
post-biofilter	0.6	62.7	tested	0.10	34.74	

Table 19. Additional analytical measurements performed on the 2006 conventional drainage biofilter plot.

Wetlands Monitoring and Evaluation

A unique aspect of the Iowa CREP is that nitrate reduction is not simply assumed based on wetland acres enrolled, but is calculated based on the measured performance of CREP wetlands. As an integral part of the Iowa CREP, a representative subset of wetlands is monitored and mass balance analyses performed to document nitrate reduction. In addition to documenting wetland performance, this will allow continued refinement of modeling and analytical tools used in site selection, design, and management of CREP wetlands.

During 2009, six wetlands were monitored for the Iowa CREP (Figure). These include Hanlontown Slough north, Johnson (Winnebago County), Louscher, Stockwell, Schwartz, and Van Horn wetlands. For close interval monitoring of nitrate-nitrogen concentrations, wetlands were instrumented with automated samplers that collected daily composite water samples at wetland inflows and outflows from mid-March or early April through the end of November. Grab samples were collected throughout the year at an approximately weekly interval at inflow and outflow locations, and from within the wetland near the outflow location when there was no outflow. Selected wetland inflows and/or wetland outflows were instrumented with Doppler flow meters for continuous measurement of water depth and flow velocity. These were combined with channel profiles to calculate discharge. Discharge was measured from February or March through the end of November at these wetlands. Wetland water levels were monitored continuously using stage recorders in order to calculate pool volume and discharge at outflow structures. Wetland water temperatures were recorded continuously for numerical modeling of nitrate loss rates.

By design, the wetlands selected for monitoring span the 0.5% - 2.0% wetland/watershed area ratio range approved for Iowa CREP wetlands. The wetlands also span a 2-3 fold range in average nitrate concentration. The wetlands thus provide a broad spectrum of those factors most affecting wetland performance: hydraulic loading rate, residence time, nitrate concentration, and nitrate loading rate. Despite significant variation with respect to average nitrate concentrations

and loading rates, the wetlands display similar seasonal patterns. Nitrate mass loads are typically low during winter because nitrate concentrations and/or discharge are often low during winter. One notable exception to this occurred during December 2009 at the Louscher/Stockwell wetland complex where concentrations and discharge were both elevated. Although we do not collected daily samples when freezing conditions are prevalent, weekly grab samples fortuitously collected during late winter or early spring high discharge events show low nitrate concentrations thought to be due to dilution from snow melt, e.g., see HS north, KS, and VH during February in Figure 23. Nitrate concentrations generally increase to their highest levels during high flow periods in spring and early summer, decline with declining flow in mid to late summer, and may increase again if there is increased flow during late summer or fall. These nitrate concentration and flow patterns are representative of the patterns that are expected for future wetlands restored as part of the Iowa CREP.

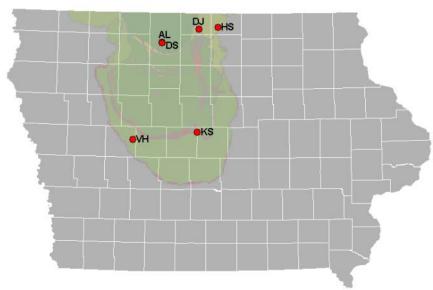


Figure 22. Wetlands monitored during 2009.

Nitrate Loss from Wetlands

Mass balance analysis and modeling were used to calculate observed and predicted nitrate removal for the monitored wetlands. Inflow and outflow nitrate concentrations measured in 2009 are illustrated in Figure . Discharge shown during December and January is estimated from USGS gage station data from a stream near each wetland. In addition, Figure shows the range of outflow concentrations predicted for these wetlands by mass balance modeling with 2009 water budget, water temperature, and measured inflow and outflow nitrate concentration inputs and forcing functions.

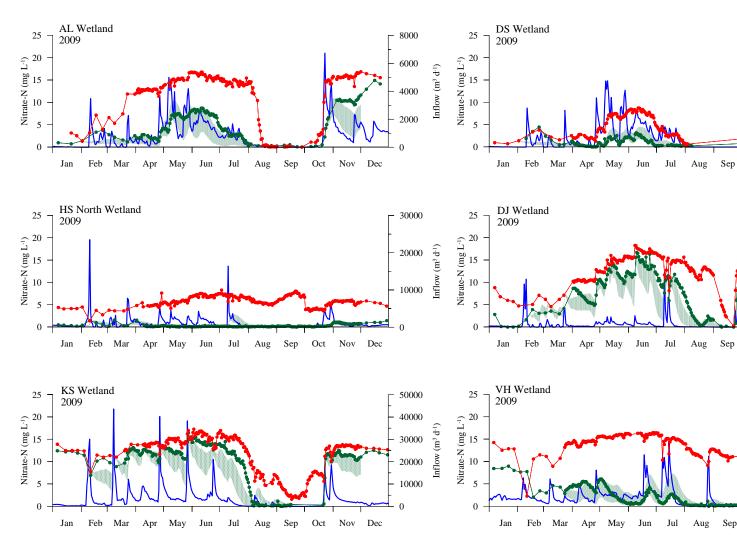


Figure 23. Measured and modeled nitrate concentrations and flows for selected wetlands monitored during 2009.

43

The monitored wetlands performed as expected with respect to nitrate removal efficiency (expressed as percent mass removal) and mass nitrate-N removal (expressed as Kg N ha⁻¹ year⁻¹). Wetland performance is a function of hydraulic loading rate (HLR), hydraulic efficiency, nitrate concentration, temperature, and wetland condition. Of these, HLR and nitrate concentration are especially important for CREP wetlands. The range in hydraulic loading rates expected for CREP wetlands is significantly greater than would be expected based on just the four fold range in wetland/watershed area ratio approved for the Iowa CREP. In addition to spatial variation in precipitation (average precipitation declines from southeast to northwest across Iowa), there is substantial annual variation in precipitation. The combined effect of these factors means that loading rates to CREP wetlands can be expected to vary by more than an order of magnitude, and will to a large extent determine nitrate loss rates for individual wetlands.

Mass balance modeling was used to estimate the variability in performance of CREP wetlands that would be expected due to spatial and temporal variability in temperature and precipitation patterns. The percent nitrate removal expected for CREP wetlands was estimated based on hindcast modeling over the 25 year period from 1980 through 2005 (Figure). For comparison, percent nitrate removal measured for wetlands monitored during 2004 to 2009 are also presented and illustrate reasonably good correspondence between observed and modeled performance. An estimated mean value function (solid line), which explains 86% of the observed variation in percent nitrate loss, and the expected percent loss range (dashed lines) are also shown in Figure 24. The observed percent nitrate removal results are based on the period of record having daily nitrate concentrations and to account for this the HLR for the observed wetlands illustrated in Figure 24 was adjusted upward on the basis of nearby USGS gage station discharge data to estimate the full annual HLR for these wetlands. Percent nitrate removal is clearly a function of HLR (Figure).

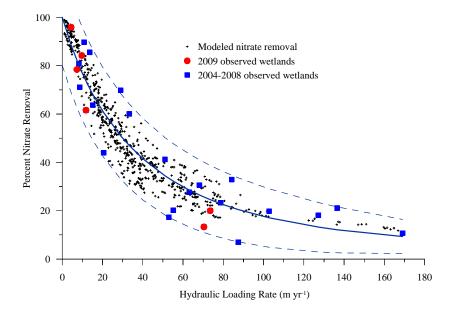


Figure 24. Modeled and observed nitrate removal efficiencies for CREP qualifying wetlands versus Hydraulic Loading Rate based on 1980 to 2005 input conditions.

Mass nitrate removal rates can vary considerably more than percent nitrate removal among wetlands receiving similar hydraulic loading rates. However, mass removal rates are predictable using models that integrate the effects of hydraulic loading rates, nitrate concentration, temperature, and wetland condition. Crumpton et al. (2006) developed and applied a model that explicitly incorporates hydraulic loading rate, nitrate concentration, and temperature to predict performance of US Corn Belt wetlands receiving nonpoint source nitrate loads. This analysis included comparisons for 38 "wetland years" of available data (12 wetlands with 1-9 years of data each) for sites in Ohio, Illinois, and Iowa, including four IA CREP wetlands (2 low load and 2 high load sites). The analysis demonstrated that the performance of wetlands representing a broad range of loading and loss rates can be reconciled by models explicitly incorporating hydraulic loading rates and nitrate concentrations (Crumpton et al. 2006). This model was updated based on 25 Iowa CREP wetlands monitored from 2004 to 2009. The updated model uses HLR and flow-weighted average (FWA) nitrate-N concentration (Figure 25) and accounts for 76 percent of the observed variation in mass nitrate removed for the 46 wetland cases considered in Figure 25. The x-axis in Figure 25 is clipped to HLR < 80 m/year, excluding several high flow years having low removal rates (see Figure 24).

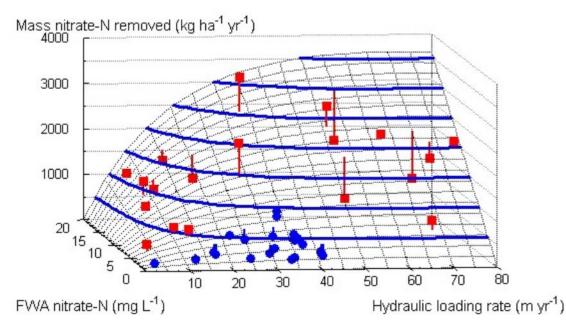


Figure 25. Observed nitrate mass removal includes Corn Belt wetlands representing 46 "wetland years" of data shown (adapted from Crumpton et al. (2006)). 2004 to 2009 CREP wetland sites are shown as red squares. Published results for Ohio and Illinois wetlands shown as blue circles.

References

Crumpton, W.G., G.A Stenback, B.A. Miller, and M.J. Helmers. 2006. Potential benefits of wetland filters for tile drainage systems: Impact on nitrate loads to Mississippi River subbasins. US Department of Agriculture, CSREES project completion report. Washington, D.C. USDA CSREES.

Outreach Activities Year 2005, 2006, 2007, 2008, and 2009

In addition to the evaluation that is taking place at the project sites in Gilmore City, Pekin, and the Wetlands sites, we have an active outreach program associated with this project. This includes presentations at technical and Extension related meetings, field days, the Drainage Research Forum, and Extension and scientific publications. The activities that are directly associated with the outreach component of this project in 2005, 2006, 2007, 2008, and 2009 are described below.

Events Organized

November 10, 2009 – Coordinated with Dr. Gary Sands from the University of Minnesota the forum in Ames, IA. There were 80 attendees consisting of producers, contractors, and agency representatives from Iowa and Minnesota.

December 4, 2008 – Coordinated with Iowa Department of Agriculture and Land Stewardship and the Iowa Drainage District Association a Drainage Engineers Meeting in Fort Dodge, IA. There were approximately 15 attendees including drainage engineers from north central Iowa.

December 2, 2008 – Coordinated with Dr. Gary Sands from the University of Minnesota the 9th Annual IA-MN Drainage Research Forum in Owatonna, MN. There were approximately 95 attendees consisting of producers, contractors, and agency representatives from Iowa and Minnesota.

November 29, 2007 – Coordinated with Dr. Gary Sands from the University of Minnesota the 8th Annual IA-MN Drainage Research Forum in Ames, IA. There were approximately 75 attendees consisting of producers, contractors, and agency representatives from Iowa and Minnesota.

November 28, 2006 – Coordinated with Dr. Gary Sands from the University of Minnesota the 7th Annual IA-MN Drainage Research Forum in Owatonna, MN. There were approximately 85 attendees consisting of producers, contractors, and agency representatives from Iowa and Minnesota.

November 2, 2005 - Coordinated with Dr. Gary Sands from the University of Minnesota the 6th Annual IA-MN Drainage Research Forum held in Dows, IA. The forum was attended by 80 stakeholders that included individuals from both Iowa and Minnesota.

The Drainage Research Forum program focuses on drainage and water management issues including the implications of nitrogen management, water quality and drainage modeling at the watershed scale, preferential flow on drained lands, nitrate-removal wetlands, cropping strategies for nitrogen management and drainage water management. Presenters commonly include researchers from Iowa State University, University of Minnesota, and the USDA Agricultural Research Service.

Field Days

A field day was organized at the Gilmore City project site. The evening field day on August 18, 2008 was attended by approximately 80 stakeholders. The topics discussed were importance of science based policy information (Iowa Secretary of Agriculture Bill Northey), current crop

issues (Paul Kassel and John Holmes), drainage district scale monitoring and nitrate-removal wetlands performance (Dr. William Crumpton), policy accomplishments at the research site and associated studies (Dean Lemke), highlights of what has been learned from 20 years of studies at Gilmore City (Dr. Stewart Melvin and Dr. James Baker), and preliminary results of current treatments (Dr. Matt Helmers).

A field day was organized at the Gilmore City project site. The evening field day on June 30, 2005 was attended by approximately 75 stakeholders. The topics discussed were current crop issues (Paul Kassel), nitrate-removal wetlands (Dr. William Crumpton), the Targeted Watershed Grant (Dean Lemke and County Board of Supervisors), highlights from 15 years at Gilmore City (Dr. Stewart Melvin, Peter Lawlor, and Dr. James Baker), and controlled drainage (Matt Helmers).

Carl Pederson and Matt Helmers presented on drainage water quality and drainage water management at a field day at the Pekin project site on September 15, 2005. The "8 to 80 Water Quality Field Day" was attended by approximately 100 students from surrounding schools.

Oral Presentations at Extension Related Meetings

Extension Presentations (Iowa):

- December 30, 2009 Presentation on "Drainage water management" at the North Central Iowa Crop and Land Stewardship Clinic in Iowa Falls, IA (35 attendees).
- December 4, 2009 Presentation on "What strategies do we have for reducing nitrate export and how effective are they?" at the Iowa Drainage District Association annual meeting in Fort Dodge, IA (75 attendees).
- December 3, 2009 Presentation "Impact of application rate and timing on nitrate-nitrogen loss through subsurface drainage systems" at the Integrated Crop Management Conference in Ames, IA (260 attendees).
- December 2, 2009 Panel Presentation "Nitrogen management for water quality" at the Iowa Farm Bureau Federation Annual Meeting in Des Moines, IA (150 attendees).
- September 23, 2009 Presentation on "Drainage water quality in Iowa: Findings from 20 years of studies at Gilmore City, IA" for the Hypoxia Task Force Tour (Invited by the Iowa Department of Agriculture and Land Stewardship to present 125 attendees).
- June 18, 2009 Presentation on "Performance of cover crops in reducing nitrate loss" at workshop at the Northeast Iowa Research and Demonstration Farm near Nashua, IA (20 attendees).
- March 17, 2009, and March 20, 2008 Presentation on "Tile drainage and water quality" at Drainage Design Workshops held in Storm Lake and Humboldt, IA (90 attendees).
- January 22, 2009 Presentation on "Water quality research in northern Iowa" at the Crop Advantage Series meeting in Fort Dodge, IA (25 attendees).
- January 13, 2009 Presentation on "Drainage design and management" at the Iowa Land Improvement Contractors Annual Meeting in Des Moines, IA (35 attendees).
- December 17, 2008 Presentation on "Water quality update" at the Ag. Chemical Dealer Update in Ames, IA (85 attendees).
- December 16, 2008 Presentation on "Water quality and soil management Ag. Drainage Well research results" at the Ag. Chemical Dealer Update in Storm Lake, IA (55 attendees).
- December 10, 2008 Presentation on "Effect of cover crops in reducing nitrate-nitrogen leaching in Iowa" at the Integrated Crop Management Conference in Ames, IA (120 attendees).
- August 20, 2008 Presentation on "Controlled drainage and nitrate-removal wetland performance" at NRCS Area 2 Technician Tour near Stanhope, IA (25 attendees).
- August 6, 2008 Presentation on "Controlled drainage and impacts of conservation practices on runoff" at the Iowa Learning Farm Field Day near Otho, IA (135 attendees).
- June 26, 2008 Presentation on "Controlled drainage water management" at a Drainage Field Day at the Southeast Research and Demonstration Farm near Crawfordsville, IA (50 attendees).
- March 20, 2008 Presentation on "Agricultural drainage water quality" at meeting organized by Humboldt USDA-NRCS (25 attendees).
- February 29, 2008, March 7, 2008, and March 18, 2008 Presentation on "Tile drainage and water quality" at Drainage Design Workshops held in Fairfield, Jefferson, and Rockwell City, IA (102 attendees).
- February 29, 2008, March 7, 2008, and March 18, 2008 Presentation on "Benefits of tiling" at Drainage Design Workshops held in Fairfield, Jefferson, and Rockwell City, IA (102 attendees).

- February 28, 2008 Presentation on "Drainage implications of continuous corn" to Hamilton County Ag. Series in Webster City, IA (15 attendees).
- February 27, 2008 Presentation on "The Iowa Plan for Wetland and Drainage Integrated Landscape Systems" at the 2008 Iowa Water Conference (125 attendees).
- February 22, 2008 Presentation on "Drainage research in Iowa" to members of the Iowa Corn Growers in Independence, IA.
- January 31, 2008 Presentation on "Nitrates and subsurface drainage in southern Iowa" at Crop Advantage Series meeting in Ottumwa, IA (55 attendees).
- January 17, 2008 Presentation on "Nitrates and subsurface drainage in southern Iowa" at Crop Advantage Series meeting in Osceola, IA (40 attendees).
- January 8, 2008 Presentation "Nitrogen management and water quality" to Coldwater-Palmer watershed group in Allison, IA (12 attendees).
- January 3, 2008 Presentation "Considerations for field drainage design" at North Central Crop Clinic in Iowa Falls, IA (50 attendees)
- December 19, 2007 Presentation "Nitrate leaching and subsurface drainage for southern Iowa" at Ag. Chemical Dealer update in Ames, IA (45 attendees).
- December 7, 2007 Presentation "Potential yield impacts of improved drainage" at a meeting of the Iowa Corn Growers Environmental committee in Johnston, IA (15 attendees).
- December 7, 2007 Presentation "Potential yield impacts of improved drainage" at the Iowa Drainage District Association annual meeting in Fort Dodge, IA (55 attendees).
- November 28, 2007 Presentation "Comparison of nitrate-nitrogen in subsurface drainage from continuous corn and corn-soybean rotation" at the Integrated Crop Management Conference in Ames, IA (120 attendees).
- August 10, 2007 Poster presentation "Agricultural drainage research" at the Corn Soybean Initiative Roundtable in Ames, IA.
- June 27, 2007 Presentation "Drainage design for economic and environmental benefits" at Iowa Farm Bureau Conservation and Natural Resource Issues Conference in Des Moines, IA (~30 attendees). [Invited]
- March 13, 2007 Presentation "Controlled drainage water quality benefits and irrigation potential" at Drainage Workshop in West Bend, IA (20 attendees).
- March 13, 2007 Presentation "Long-term benefits of tiling" at Drainage Workshop in West Bend, IA (20 attendees).
- January 24, 2007 Presentation "Drainage/water quality: Implications of continuous corn" at Crop Advantage Series meeting in Waterloo, IA (~55 attendees).
- January 18, 2007 Presentation "N-application impacts on N-concentration" at Coldwater-Palmer Watershed meeting in Allison, IA (12 attendees).
- January 10, 2007 Presentation "Drainage/water quality: Implications of continuous corn" at Crop Advantage Series meeting in Mason City, IA (~55 attendees).
- January 8, 2007 Presentation "Drainage water management and biofilters in Iowa" at Iowa Land Improvement Contractors Association annual meeting in Des Moines, IA (120 attendees). [Invited by LICA]
- December 18, 2006 Presentation "Pesticide movement in soils" at Agricultural Chemical Update in Denison, IA (40 attendees).
- December 8, 2006 Presentation "Drainage design now and in the future" at Iowa Drainage District Association annual meeting in Fort Dodge, IA (100 attendees).

- December 6, 2006 Presentation "Pesticide movement in soils" at Agricultural Chemical Update in Ames, IA (10 attendees).
- November 30, 2006 Presentation "Economic and environmental considerations for drainage design" at Integrated Crop Management Conference in Ames, IA (225 attendees).
- September 7, 2006 Presentation "Conservation systems and water quality" at Field Day in Hardin County (~45 attendees).
- September 6, 2006 Presentation "Conservation systems and water quality" at Field Day in Plymouth County (~100 attendees).
- August 31, 2006 Presentation "Conservation systems and water quality" at Farm Progress Show.
- August 22, 2006 Presentation "Beef manure and water quality issues" at Manure Management School in Ames, IA (50 attendees).
- August 3, 2006 Presentation "Subsurface drainage bioreactors" at Iowa Land Improvement Contractors Field Day (~65 attendees).
- July 12, 2006 Presentation "Benefits of tiling and drainage water management" at Drainage Field Day at Southeast Iowa Research Farm, CCA Session (50 attendees).
- June 19, 2006 Presentation "Water quality issues in Iowa" to Iowa Pork Industry Center Advisory Group.
- March 13-17, 2006 Presentation "Long-term benefits of tiling" at Iowa Drainage Design Workshops (~200 attendees).
- March 13-17, 2006 Presentation "Controlled drainage: water quality benefits and irrigation potential" at Iowa Drainage Design Workshops (~200 attendees).
- March 7, 2006 Presentation "Conservation systems: manure and drainage water quality" at Agriculture and the Environment Conference in Ames, IA (150 attendees).
- March 7, 2006 Presentation "Subsurface drainage and nitrate-nitrogen leaching from fifteen years in north-central Iowa" at Agriculture and the Environment Conference in Ames, IA (50 attendees).
- March 2, 2006 Presentation "Nitrogen timing effects on drainage water quality" to Iowa Farm Bureau Environmental Advisory Committee [Invited].
- February 15, 2006 Presentation "Drainage design" at Soil and Water Management Clinic in Ames, IA (10 attendees).
- February 15, 2006 Presentation "Drainage water management" at Soil and Water Management Clinic in Ames, IA (10 attendees).
- January 24, 2006 Presentation "Conservation systems: manure and drainage water quality" at Crop Advantage Series meeting in Storm Lake, IA (45 attendees).
- January 19, 2006 Presentation "Conservation systems: manure and drainage water quality" at Crop Advantage Series meeting in Spirit Lake, IA (50 attendees).
- January 18, 2006 Presentation "Agricultural drainage and water research" at Boone, IA weekly ag meeting (26 attendees).
- January 13, 2006 Presentation "Manure and drainage water quality" at North Central Iowa Crop Clinic (25 attendees).
- January 12, 2006 Presentation "Drainage water management" to Boone River Watershed Group (15 attendees).
- January 10, 2006 Presentation "Basic drainage design" at Iowa Land Improvement Contractors Association annual meeting in Des Moines, IA (80 attendees).

January 9, 2006 – Presentation "Drainage water management in Iowa" at Iowa Land Improvement Contractors Association annual meeting in Des Moines, IA (100 attendees).

- December 15, 2005 Presentation "Drainage management and cropping practices" at Iowa Drainage District Association annual meeting in Fort Dodge, IA (75 attendees).
- November 30 and December 1, 2005 Presentation "Conservation systems: effects of manure on drainage water quality" at Integrated Crop Management conference in Ames, IA (220 attendees).
- August 24, 2005 Presentation "Manure effects of water quality" at Manure Management Clinic in Ames, IA (40 attendees).
- July 28, 2005 Presentation "Subsurface drainage design and drainage water management in Iowa" at Ag Insights: Water Management Solutions, meeting sponsored by Hancor in Oelwein, IA (50 attendees).
- July 7, 2005 Presentation "Drainage design for crop production and environmental benefits" at Pro Ag Meeting, Mitchell County Extension, Osage, IA (15 attendees).
- January 25, 2005 Presentation "New tiling research in Iowa" at Crop Advantage Series meeting in Atlantic, Iowa (120 attendees).
- January 12, 2005 Presentation "Modified drainage for improved water quality" at North Central Crop Clinic in Iowa Falls, IA (45 attendees)
- January 11, 2005 Presentation "Tiling research at Iowa State University" at Iowa Land Improvement Contractors of America annual meeting in Des Moines, IA (60 attendees).
- January 6, 2005 Presentation "New tiling research in Iowa" at Crop Advantage Series meeting in Cedar Rapids, Iowa (40 attendees).
- January 4, 2005 Presentation "New tiling research in Iowa and economic considerations" at Crop Advantage Series meeting in Mt. Pleasant, Iowa (25 attendees).
- March 1-3, 2005 Presentation "Wetland design for drainage water treatment" at Minnesota Agricultural Drainage Design Workshop in Mankato, MN (45 attendees).

Extension Presentations (Regional):

- December 15, 2009 Presentation "What every CCA should know about drainage" at the Indiana Certified Crop Advisors Annual Meeting in Indianapolis, IN [Invited] (290 attendees).
- April 1, 2009 Presentation "Integrated drainage-wetland landscape systems: A strategy to provide environmental and crop production benefits" at the Agricultural Drainage Management Systems Task Force meeting in Columbus, OH (50 attendees).
- March 11, 2009 Presentation "Wetlands and drainage: Iowa Perspective" at the Minnesota Agricultural Drainage Design Workshop in Willmar, MN (40 attendees).
- October 15-16, 2007 Project team was involved with presenting information on nitrate removal wetland performance at an IDALS organized meeting with representatives of USDA-FSA, USEPA, state agency, and other NGO personnel from across the combelt.
- April 4, 2007 Presentation "Manure application on legumes" at Heartland Animal Manure Management Workshop in Nebraska City, NE (~35 attendees from Iowa, Missouri, Nebraska, Kansas, and EPA) [Invited].
- April 4, 2007 Presentation "ISU long term poultry and swine manure studies on tile drain impacts" at Heartland Animal Manure Management Workshop in Nebraska City, NE (~40 attendees from Iowa, Missouri, Nebraska, Kansas, and EPA) [Invited].
- March 8, 2007 Presentation "Wetland design considerations for drainage water treatment" at Minnesota Agricultural Drainage Design Workshop in Mankato, MN (40 attendees).

- March 7, 2007 Presentation "Intro to conservation drainage design: Shallow and managed drainage systems" at Minnesota Agricultural Drainage Design Workshop in Mankato, MN with Gary Sands(40 attendees).
- February 16, 2007 Webcast presentation "Effects of manure application on drainage water quality" as part of the National Livestock and Poultry Environmental Learning Center webcast series. [Invited national audience]
- November 28, 2006 Presentation "Drainage Water Management Update from Iowa" at IA-MN Drainage Research Forum in Dows, IA (85 attendees consisting of producers, contractors, and agency representatives from Iowa and Minnesota).
- October 16, 2006 Presentation "Effects of Manure on Drainage Water Quality" to Nebraska Livestock and Environment Issues Committee (~40 participants) [Invited].
- March 9, 2006 Invited presentation "Wetland design for drainage water treatment" at Minnesota Agricultural Drainage Design Workshop in Mankato, MN (50 attendees).
- June 7-9, 2005 Presentation "Subsurface drainage and treatment of drainage water to reduce nitrate-N" at Heartland Water Quality Initiative Nitrogen Workshop in Nebraska City, NE (75 attendees from Iowa, Nebraska, Kansas, Missouri, and USEPA).
- June 7-9, 2005 Presentation "Design of drainage water treatment facilities" at Heartland Water Quality Initiative Nitrogen Workshop in Nebraska City, NE (20 attendees from Iowa, Nebraska, Kansas, Missouri, and USEPA).
- January 26-27, 2005 Presentation "Drainage design and management" at Heartland Water Quality Initiative Nitrogen Roundtable in Nebraska City, NE (30 attendees from Iowa, Nebraska, Kansas, Missouri, and USEPA).

Technical Papers (Peer-reviewed)

- Qi, Z. and M. J. Helmers Converting Permittivity measured by PR2 capacitance probe into soil moisture for Des Moines Lobe soils in Iowa. Accepted to *Soil Use and Management* Dec. 6, 2009.
- Qi, Z. and M. J. Helmers. 2009. Soil water dynamics under winter rye cover crop in central Iowa. *Vadose Zone Journal* 9(1): 53-60.
- Riley, K. D.*, M. J. Helmers, P A. Lawlor, and R. Singh. 2009. Water balance investigation of controlled drainage in non-weighing lysimeters. *Applied Engineering in Agriculture* 25(4): 507-514.
- Lawlor, P. A., M. J. Helmers, J. L. Baker, S. W. Melvin, and D. W. Lemke. 2008. Nitrogen application rate effects on nitrate-nitrogen concentrations and losses in subsurface drainage. *Trans. ASABE* 51(1): 83-94.
- Singh, R., M. J. Helmers, W. G. Crumpton, and D. W. Lemke. 2007. Predicting effects of drainage water management in Iowa's subsurface drained landscapes. *Agricultural Water Management* 92:162-170.
- Singh, R., M. J. Helmers, and Z. Qi. 2006. Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes. *Agricultural Water Management*. 85: 221-232.

Technical Papers, Conference Papers, and Extension Related Publications

Helmers, M. J. and R. Christianson. 2009. Impact of application rate and timing on nitratenitrogen loss through subsurface drainage systems. *In:* Proceedings of the 21st Annual Integrated Crop Management Conference (December 2 and 3, Iowa State University, Ames, IA), pp. 133-138. [Oral Presentation - Helmers]

- Christianson, R., M. J. Helmers, P. Lawlor, and D. Lemke. 2009. Impact of fertilizer timing on drainage nitrate levels. ASABE Meeting Paper No. 09-6246. St. Joseph, MI: ASABE. [Oral Presentation – Christianson]
- Qi, Z., M.J. Helmers, and P. Lawlor. 2008. Effect of different land covers on nitrate-nitrogen leaching and nitrogen uptake in Iowa. ASABE Meeting Paper No. 08-4806. St. Joseph, MI: ASABE. [Oral Presentation – Qi]
- Qi. Z. and M. J. Helmers. 2008. Effect of cover crops in reducing nitrate-nitrogen leaching in Iowa. *In:* Proceedings of the 20th Annual Integrated Crop Management Conference (December 10 and 11, Iowa State University, Ames, IA), pp. 283-294. [Oral Presentation Helmers]
- Helmers, M. 2007. Drainage/water quality: Implications of continuous corn. p. 28. In 2007 Proceedings Crop Advantage Series. AEP 0200f. Iowa State Univ., Ames, IA.
- Helmers, M. J. and P. Lawlor. 2007. Comparison of nitrate-nitrogen in subsurface drainage from continuous corn and corn-soybean rotation. In *Proceedings of the 19th Annual Integrated Crop Management Conference* (November 29 and 30, 2007, Iowa State University, Ames, IA), pp. 265-277. [Oral Presentation]
- Helmers, M. J. and R. Singh. 2006. Economic and environmental considerations for drainage design. In *Proceedings of the 18th Annual Integrated Crop Management Conference* (November 29 and 30, 2006, Iowa State University, Ames, IA), pp. 239-244. [Oral Presentation]
- Singh, R. and M. J. Helmers. 2006. Subsurface drainage and its management in the upper Midwest tile landscape. In *Proceedings of the EWRI Congress, ASCE* [Oral Presentation].
- Lawlor, P. A., M. J. Helmers, J. L. Baker, S. W. Melvin, and D. W. Lemke. 2005. Nitrogen application rate effects on corn yield and nitrate-nitrogen concentration and loss in subsurface drainage. ASAE Meeting Paper No. 05-2025. St. Joseph, MI: ASAE.
- M. J. Helmers, P. A. Lawlor, J. L. Baker, S. W. Melvin, and D. W. Lemke. 2005. Temporal subsurface flow patterns from fifteen years in north-central Iowa. ASAE Meeting Paper No. 05-2234. St. Joseph, MI: ASAE.
- Helmers, M. J. and P. A. Lawlor. 2005. Conservation systems: Effects of manure application on drainage water quality. In *Proceedings of the 17th Annual Integrated Crop Management Conference* (November 30 and December 1, 2005, Iowa State University, Ames, IA), pp. 177-188.

Technical Abstracts

- Crumpton, W., G. A. Stenback, B. A. Miller, Helmers, M. J., and D. Green 2009. Potential impact of targeted wetland restoration on nitrate loads to Mississippi River subbasins: Performance forcast modeling of loads and load reductions. *In:* Science to Solutions: Reducing Nutrient Export to the Gulf of Mexico. December 9-11, 2009, Des Moines, IA. [Poster Presentation Crumpton]
- Helmers, M. J. 2009. Riverine nutrient export in Iowa watersheds and relations to landscape properties and agricultural land use. *In:* Science to Solutions: Reducing Nutrient Export to the Gulf of Mexico. December 9-11, 2009, Des Moines, IA. [Invited Oral Presentation – Helmers]

- Qi, Z. and M. J. Helmers. 2007. Soil moisture and subsurface drainage with winter rye cover crop in Iowa. *In:* ASABE International Meeting. June 17-20, 2007, Minneapolis, MN.
- Lemke, D.W., R. L. Cooney, S.L. Richmond, W.G. Crumpton, and M. J. Helmers. 2006. A new vision for federal policy to facilitate restoration and development of wetlands as off-field nitrogen sinks for cropped landscapes. *In:* ASA-CSSA-SSSA Annual Meeting Abstracts. Nov. 12-16, 2006, Indianapolis, IN.
- Qi, Z., M. Helmers, and R. Singh. 2006. Evaluating a drainage model using soil hydraulic parameters derived from various methods. ASAE Meeting Paper No. 062318. St. Joseph, Mich.: ASAE.
- Singh, R. and M. J. Helmers. 2006. Shallow and controlled drainage systems in Iowa's tile landscapes. *In:* ASA-CSSA-SSSA Annual Meeting Abstracts. Nov. 12-16, 2006, Indianapolis, IN.

Poster Presentations at Extension Related Meetings

- June 28, 2006 Poster Presentation "Water and nutrient management: In-field strategies" Iowa Farm Bureau Ag. And Environment Conference (~65 attendees)
- Helmers, M. J., P. A. Lawlor, J. L. Baker, S. W. Melvin, W. Crumpton, D. W. Lemke. 2005. Temporal subsurface flow patterns from fifteen years in north-central Iowa. Agriculture and the Environment Conference (March 8-9, 2005, Iowa State University, Ames, IA).
- P. A. Lawlor, M. J. Helmers, J. L. Baker, S. W. Melvin, W. Crumpton, D. W. Lemke. 2005. Nitrogen application rate effects on yield, nitrate-nitrogen concentration and loss in subsurface drainage. Agriculture and the Environment Conference (March 8-9, 2005, Iowa State University, Ames, IA).

Planned Manuscripts to be Submitted in 2010

- Lawlor, P. A., M. J. Helmers, J. L. Baker, and S. W. Melvin. Nitrogen source and timing effects on yields and nitrate-nitrogen concentrations in subsurface drainage from a corn-soybean rotation. To be submitted to *Trans ASABE*. [Draft prepared]
- Helmers, M.J., P. Lawlor, J. L. Baker, and S. W. Melvin. Nitrate-nitrogen in subsurface driange as affected by nitrogen application rate to continuous corn and a corn-soybean rotation. To be submitted to *Agriculture, Ecosystems and Environment*. [Draft prepared]